VIVEKANANDHA

COLLEGE OF ARTS AND SCIENCES FOR WOMEN

(Autonomous)

ELAYAMPALAYAM, TIRUCHENGODE (Tk.), NAMAKKAL (Dt.) An ISO 9001: 2015 Certified Institution

(Affiliated to Periyar University, Approved by AICTE & Re-accredited with 'A' Grade by NAAC) (Recognized under section 2(f) and 12(B) Under Act 1956)

PG AND RESEARCH

DEPARTMENT OF PHYSICS

B.Sc., Physics OBE Syllabus

Tamil Nadu State Council for Higher Education (TANSCHE) Learning Outcome – based Curriculum Frame work (LOCF) (CO-K, PO mapping adopted and implemented from 2023-24 onwards)

VIVEKANANDHA EDUCATIONAL INSTITUTIONS Angammal Educational Trust Elayampalayam, Tiruchengode (Tk.), Namakkal (DT).

About the College

Vivekanandha College of Arts and Sciences for Women (Autonomous) was established and hailed into Women's Educational Service in the Year 1995. Angammal Educational Trust Chaired by the great Educationalist 'Vidhya Rathna' Prof. Dr.M.KARUNANITHI, B.Pharm., M.S., Ph.D., D.Litt., sponsors this college and other institutions under the name of the great Saint Vivekanandha. Our institutions are situated on either side of Tiruchengode -Namakkal Main Road at Elayampalayam, 6 k.m. away from Tiruchengode. This is biggest women's college in India with more than 7500 girl students and more than 18 departments. The strength of the college was just 65 at the time of its establishment. With the dedication, work, sacrifice and long vision of the chairman, this institution has grown into a Himalaya stage. As a result of which UGC, New Delhi, awarded 2f and 12b, extended Autonomous status for second cycle. The National Assessment and Accreditation Council reaccredited with grade 'A' for its successful performance.

As an Autonomous Institution, academic professionals of the college framed Curriculum and Syllabi in consultation with all its stakeholders to cater the needs of the young women to fulfil the women empowerment and present Industrial needs to the local benefits. The students are empowering with confidence and required skills to face the society.

Quality Policy

To provide professional training by establishing a high level centre of learning that provides quality education at par with the international standards and Provide excellence education with well equipped infrastructure to all the rural women.

Our Vision

To be an academic institution exclusively for women, in dynamic equilibrium with the social and economic environment, strive continuously for excellence in education, research and technological service to the nation.

Our Mission

The mission of our institution is to discover, teach and apply knowledge for the intellectual, cultural, ethical, social and economic growth of women students.

S. No.	TOPICS	P. No.					
Ι	Scope of the course						
II	Salient features						
III	Objectives						
IV	Eligibility for admission						
V	Duration of the course						
VI	Continuous Internal Assessment						
VII	Question Paper Pattern						
VIII	Passing minimum						
IX	Eligibility for Examination						
Х	Classification of successful candidates						
XI	Commencement of these regulations						
XII	Course pattern						
	SYLLABUS FOR YEAR - I (Semester - I)						
1	Language – I: Foundation Tamil - I						
2	Malayalam I						
3	Hindi - I						
4	French - I						
5	English – I: Foundation English - I						
6	Core – I: Properties of Matter and Sound						
7	Core Practical - I : Properties of Matter						
8	Allied Mathematics - I						
9	Allied Mathematics Practical - I						
10	Skill Enhancement Course SEC-1 (NME) : Physics for Everyday Life						
11	Foundation Course: Introductory Physics						
12	Ability Enhancement Compulsory Course (AECC) Soft Skill-1						
	SYLLABUS FOR YEAR - I (Semester - II)						
1	Language – II: Tamil - II						
2	Malayalam - II						
3	Hindi - II						
4	French - II						
5	English – II: Foundation English - II						
6	Core – II: Heat, Thermodynamics and Statistical Physics						
7	Core Practical – II : Heat, Oscillations, Waves & Sound						
8	Allied Mathematics – II						
9	Allied Mathematics Practical - II						
10	SEC-2 (NME) : Astrophysics						
11	SEC-3 (Discipline/Subject Specific): Energy Physics						
12	AECC - Soft Skill-2						

S. No.	TOPICS	P. No.
	SYLLABUS FOR YEAR - II (Semester - III)	
1	Language III: Tamil - III	
2	Malayalam - III	
3	Hindi - III	
4	French - III	
5	English – III: Foundation English - III	
6	Core - III: General Mechanics and Classical Mechanics	
7	Core Practical - III : Electricity	
8	Allied Chemistry – I	
9	Allied Chemistry Practical - I	
10	SEC-4 (Entrepreneurial Based) : Mathematical Physics	
11	SEC-5 : Medical Instrumentation	
12	AECC - Soft Skill-3	
13	E.V.S	
	SYLLABUS FOR YEAR - II (Semester - IV)	I
1	Language – IV: Tamil IV	
2	Malayalam - IV	
3	Hindi - IV	
4	French - IV	
5	English – IV: Foundation English - IV	
6	Core IV: Optics and Spectroscopy	
7	Core Practical - IV : Light	
8	Allied Chemistry - II	
9	Allied Chemistry Practical - II	
10	SEC-6 : Digital Photography	
11	SEC-7 : Material Science	
12	E.V.S	
	SYLLABUS FOR YEAR - III (Semester - V)	
1	Core – V: Atomic Physics and Lasers	
2	Core – VI: Relativity and Quantum Mechanics	
3	Core - VII: Numerical Methods and C Programming	
4	SEC - 8 : Communication Physics	
5	Core Practical – V : Spectrometer and Electricity	
6	Value Education - YOGA	
7	Internship / Industrial Visit / Field Visit	
	SYLLABUS FOR YEAR - III (Semester - VI)	
1	Core - VIII: Nuclear and Particle Physics	
2	Core - IX: Solid State Physics	
3	SEC - 9 : Digital Electronics and Microprocessor 8085	
4	SEC - 10 : Nano Science and Nano Technology	
5	Core Practical - VI : Electronics	
6	Project	
7	Extension Activity	
8	Professional Competency Skill	

REGULATIONS

I. SCOPE OF THE COURSE

B.Sc. (Physics), the recent developments in Physical sciences, has been included in the enriched syllabus to meet out the present day needs of academic and research, institutions and industries. The program expects a serious commitment of the student to take up challenging study schedules and assignments. The course involves a blend of theoretical education and practical training which run concurrently for a period of three years and equips a student with knowledge, ability, skills and other qualities required for a professional accountant.

The uniqueness of the program is its content and topic coverage, the teaching methodology and the faculty. The syllabus has been designed at a level equal to that of professional courses. The teaching methodologies include classroom lectures, industrial visits, orientation, internship, case study and research work. Focus is also on developing soft skills of the students. For Core subjects, Outsource Guest Lectures by Industrialists and Professional Men will be arranged to enable the students to get wider exposure.

II. SALIENT FEATURES

- ✓ Course is specially designed for a higher level Career Placement.
- ✓ Special Guest lecturers from Industrialists will be arranged.
- ✓ Exclusively caters to students interested in pursuing higher studies.
- ✓ Special Industry Orientations and Training are parts of the Degree Course.
- Project work is included in the syllabus to enhance conceptual, analytical & deductive skills.

III. OBJECTIVES OF THE COURSE

- \checkmark The new syllabus throws light on the recent and emerging areas of Physics.
- \checkmark Enable the students understand Physics and make them more relevant to the society.
- Develop the analytical ability in students so that they are become objective in solving problems.
- \checkmark Help the students learn practical skills in a better way.
- ✓ Inculcate research aptitude in students.
- \checkmark Enable the students to go to higher levels of learning Physics.
- \checkmark Improve the employability of the students.
- To inspire the students to apply their knowledge gained for the development of society in general.

IV. ELIGIBILITY FOR ADMISSION

Candidates seeking admission to the first year Degree course (B.Sc. Physics) shall be required to have passed Higher Secondary Examination with Physics as one of the Subjects conducted by the Government of Tamil Nadu.

V. DURATION OF THE COURSE

- ✓ The course shall extend over a period of three academic years consisting of six semesters. Each academic year will be divided into two semesters. The First semester will consist of the period from July to November and the Second semester from December to March.
- ✓ The subjects of the study shall be in accordance with the syllabus prescribed from time to time by the Board of Studies of Vivekanandha College of Arts and Sciences for Women with the approval of Periyar University.
- ✓ Each subject will have six hours of lecture per week apart from practical training at the end of each semester.

VI. CONTINUOUS INTERNAL ASSESSMENT

The performance of the students will be assessed continuously and the Internal Assessment Marks will be as under:

1. Average of three Test - 15 Marks

2.	Assignment	- 5 Marks
3.	Attendance	- 5 Marks
	Total	= 25 Marks

.....

The distribution of attendance marks is given as follows,

76-80 %	- 1 Mark
81-85 %	- 2 Marks
86-90 %	- 3 Marks
91-95 %	- 4 Marks
96-100 %	- 5 Marks

VII. QUESTION PAPER PATTERN

Question Paper Pattern for the Examinations

Time: 3 Hours

Maximum Marks: 75

Part A

Answer all the following Questions (choose the best answer)

(20 x 1 = 20 Marks)

Part B

Answer all questions (Either or type)

(5 x 5 = 25 Marks)

Part C

Answer any three of the following questions

 $(3 \times 10 = 30 \text{ Marks})$

VIII. PASSING MINIMUM

In the University Examinations, the passing minimum shall be 40 % out of 75 Marks for theory (30 marks) and 40% out of 60 marks for practical (24 Marks).

IX. ELIGIBILITY FOR EXAMINATION

A candidate will be permitted to appear for the University Examination only on earning 75 % of attendance and only when her conduct has been satisfactory. It shall be open to grant exemption to a candidate for valid reasons subject to conditions prescribed.

X. CLASSIFICATION OF SUCCESSFUL CANDIDATES

Successful candidates passing the examination of Core Courses (main and allied subjects) and securing marks

- a) 75 % and above shall be declared to have passed the examination in first class with Distinction provided they pass all the examinations prescribed for the course at first appearance itself.
- b) 60% and above but below 75 % shall be declared to have passed the examinations in first class without Distinction.
- c) 50% and above but below 60% shall be declared to have passed the examinations in second class.
- d) All the remaining successful candidates shall be declared to have passed the examinations in third class.
- e) Candidates who pass all the examinations prescribed for the course at the first appearance itself and within a period of three consecutive academic years from the year of admission only will be eligible for University rank.

XI. COMMENCEMENT OF THESE REGULATIONS

These regulations shall take effect from the academic year 2023 - 2024 (i.e.,) for the students who are to be admitted to the first year of the course during the academic year 2023 - 2024 and thereafter.

XII. COURSE PATTERN

SYLLABUS FRAME WORK 2023 – 2024 Onwards

STEENBOSTRAWE VORK 2025 2024 Onwards													
Subjects	Inst. Hour/Week	Credit	Exam ours	Internal	External	Total Marks	Subjects	Inst. Hour/Week	Credit	Exam ours	Internal	External	Total Marks
						YE	AR - I					II	
	Semest	er - I						S	emeste	r - II		r - r	
Language I	6	3	3	25	75	100	Language II	6	3	3	25	75	100
English I	4	3	3	25	75	100	English II	4	3	3	25	75	100
Core I	5	3	3	25	75	100	Core II	5	3	3	25	75	100
Core Practical - I	3	3	3	25	75	100	Core Practical - II	3	3	3	25	75	100
Allied I	4	3	3	25	75	100	Allied II	4	3	3	25	75	100
Allied Practical - I	2	2	3	25	75	100	Allied Practical - II	2	3	3	25	75	100
SEC-1 (NME)	2	2	3	25	75	100	SEC-2 (NME)	2	2	3	25	75	100
Foundation Course	2	2	3	25	75	100	SEC-3	2	2	3	25	75	100
Soft Skill-1	2	2	3	25	75	100	Soft Skill-2	2	2	3	25	75	100
Total	30	23	27	225	675	900	Total	30	24	27	225	675	900
						TOT			47	54	450	1350	1800
	<u> </u>					YEAR -	· II	0		117			
	Semest	er - 111				[S	emester	: - IV			
Language III	6	3	3	25	75	100	Language IV	6	3	3	25	75	100
English III	4	3	3	25	75	100	English IV	4	3	3	25	75	100
Core III	4	3	3	25	75	100	Core IV	4	3	3	25	75	100
Core Practical - III	3	3	3	25	75	100	Core Practical - IV	3	3	3	25	75	100
Allied III	3	3	3	25	75	100	Allied IV	3	3	3	25	75	100
Allied Practical - III	3	2	3	40	60	100	Allied Practical - IV	3	3	3	40	60	100
SEC - 4	2	2	3	25	75	100	SEC - 6	2	2	3	25	75	100
SEC - 5	2	2	3	25	75	100	SEC - 7	2	2	3	25	75	100
Soft Skill-3	2	2	3	25	75	100	Soft Skill-4	2	2	3	25	75	100
E.V.S	1	_	-	-	-	-	E.V.S	1	2	3	25	75	100
Total	30	23	27	240	660	900	Total	30	26	30	265	735	1000
TOTAL									49	57	505	1395	1900

						YEAF	R - III						
	Semester	- V					Semester - VI						
Core V	6	5	3	25	75	100	Core VII	6	5	3	25	75	100
Core VI	6	5	3	25	75	100	Core VIII	6	3	3	25	75	100
SEC - 8	6	4	3	25	75	100	SEC - 10	5	3	3	25	75	100
SEC - 9	5	4	3	25	75	100	SEC - 11	6	3	3	25	75	100
Core Practical -V	3	2	3	25	75	100	Core Practical -VI	3	2	3	25	75	100
Value Education	2	2	3	25	75	100	Project	2	2	-	25	75	100
							Professional						
Internship /							Competency	2	2	3	25	75	100
Industrial Visit	2	2	-	-	-	-	Skill			1			
/ Field Visit							Extension	-	1	-	-	-	-
							Activity			1			
Total	30	24	18	150	450	600	Total	30	21	18	175	525	700
			·	··	T	OTAL	·		45	36	325	975	1300
			TO	TAL C	CREDIT	FOR THE	E COURSE		94	93	830	2370	3200

XIII. LIST OF CORE PAPERS

S.No	Course Code	Course Title
1.	23U1PHC01	Properties of Matter and Sound
2.	23U2PHC02	Heat, Thermodynamics and Statistical Physics
3.	23U3PHC03	General Mechanics and Classical Mechanics
4.	23U4PHC04	Optics and Spectroscopy
5.	23U5PHC05	Atomic Physics and Lasers
6.	23U5PHC06	Relativity and Quantum Mechanics
7.	23U6PHC07	Nuclear and Particle Physics
8.	23U6PHC08	Solid State Physics

LIST OF ELECTIVES

S.No	Course Code	Course Title						
1.	23U5PHE01	Communication Systems						
2.	23U2PHE02	Energy Physics						
3.	23U6PHE03	Mathematical Physics						
4.	23U5PHE04	Advanced Mathematical Physics						
5.	23U5PHE05	Numerical Methods and C Programming						
б.	23U4PHE06	Materials Science						
7.	23U6PHE07	Lasers and Fiber Optics						
8.	23U4PHE08	Digital Photography						
9.	23U6PHE09	Nano Science						
10.	23U3PHE10	Medical Instrumentation						
11.	23U6PHE11	Digital Electronics and Microprocessor 8085						
	LIST OF CORE PRACTICLES							

S.No	Course Code	Course Title
1	23U1PHCP01	Properties of Matter
2	23U2PHCP02	Heat, Oscillations, Waves & Sound
3	23U3PHCP03	Electricity
4	23U4PHCP04	Light
5	23U1PHCP05	Spectrometer and Electricity
6	23U1PHCP06	Electronics

NON MAJOR ELECTIVE COURSE

S.No	Course Code	Course Title
1	23U1PHN01	Physics for Everyday Life
2	23U2PHN02	Astrophysics
3	23U4PHN03	Medical Physics
4	23U3PHN04	Home Electrical Installation
5	23U4PHN05	Physics of Music

ALLIED PHYSICS

S.No	Code	Course Title
1	23U1PHA01	Allied Physics – I
2	23U2PHA02	Allied Physics - II

B.Sc., Physics - Syllabus under OBE Pattern (2023 - 2024 onwards)

Structure of the Course

SEMESTER - I

				Hr	s.		MARKS			
SEM	PART	SUBJECT CODE	TITLE OF THE SUBJECT	Lect.	Lab	CREDIT	CIA	EA	TOTAL	
	Ι		TAMIL - I	6	-	3	25	75	100	
	II		ENGLISH - I	4	-	3	25	75	100	
		23U1PHC01	Core - I : Properties of Matter and Sound	5	-	3	25	75	100	
	III	23U1PHCP01	Core Practical - I : Properties of Matter	-	3	3	25	75	100	
I			Allied - I : Allied Mathematics - I	4	-	3	25	75	100	
			Allied Practical - I :	-	2	2	25	75	100	
		23U1PHN01	SEC-1 (NME) : Physics for Everyday Life	2	-	2	25	75	100	
	IV	23U1PHF01	Foundation Course : Introductory Physics	2	-	2	25	75	100	
			Soft Skill-1	2	-	2	25	75	100	
	1	TC	DTAL	25	5	23	225	675	900	

SEMESTER - II

				H	rs.			MARKS	\$
SEM	PART	SUBJECT CODE	TITLE OF THE SUBJECT	Lect.	Lab	CREDIT	CIA	EA	TOTAL
	Ι		TAMIL - II	6	-	3	25	75	100
	II		ENGLISH - II	4	-	3	25	75	100
		23U2PHC02	Core - II : Heat, Thermodynamics and Statistical Physics	5	-	3	25	75	100
	III	23U2PHCP02	Core Practical -II : Heat, Oscillations, Waves & Sound	_	3	3	25	75	100
п			Allied - II : Allied Mathematics - II	4	-	3	25	75	100
			Allied Practical - II :	-	2	3	25	75	100
		23U2PHN02	SEC - 2 (NME) : Astrophysics	2	_	2	25	75	100
	IV	23U2PHE02	SEC - 3 : Energy Physics	2	-	2	25	75	100
	IV		Soft Skill-2	2	-	2	25	75	100
			TOTAL	25	5	24	225	675	900

SEMESTER - III

				Hr	s.			MARKS	•	
SEM	SUBJECT LU CODE	TITLE OF THE SUBJECT	Lect.	Lab	CREDIT	CIA	EA	TOTAL		
	Ι		TAMIL - III	6	_	3	25	75	100	
	II		ENGLISH - III	4	-	3	25	75	100	
		23U3PHC03	Core - III : General Mechanics and Classical Mechanics	4	_	3	25	75	100	
	III	23U3PHCP03	Core Practical - III : Electricity	_	3	3	25	75	100	
ш				Allied - III : Allied Chemistry - I	3	_	3	25	75	100
				Allied Practical - III : Allied Chemistry Practical - I	-	3	2	40	60	100
		23U6PHE03	SEC - 4 : Mathematical Physics	2	-	2	25	75	100	
	IV	23U3PHE10	SEC - 5 : Medical Instrumentation	2	-	2	25	75	100	
			Soft Skill-3	2	_	2	25	75	100	
			E.V.S	1	-	_	-	_	-	
			Total	24	6	23	240	660	900	

SEMESTER - IV

				Hr	s.			MARK	s	
SEM	PART	SUBJECT CODE	TITLE OF THE SUBJECT	Lect.	Lab	CREDIT	CIA	EA	TOTAL	
	Ι		TAMIL - IV	6	-	3	25	75	100	
	II		ENGLISH - IV	4	-	3	25	75	100	
		23U4PHC04	Core - IV : Optics and Spectroscopy	4	-	3	25	75	100	
		23U4PHCP04	Core Practical - IV : Light	-	3	3	25	75	100	
	III	III		Allied - IV : Allied Chemistry - II	3	-	3	25	75	100
IV			Allied Practical - IV : Allied Chemistry Practical - II	-	3	3	40	60	100	
		23U4PHE08	SEC - 6 : Digital Photography	2	-	2	25	75	100	
	IV	23U4PHE06	SEC - 7 : Materials Science	2	-	2	25	75	100	
			Soft Skill-1	2	-	2	25	75	100	
			E.V.S	1	-	2	25	75	100	
			Total	24	6	26	265	735	1000	

SEMESTER - V

				Hr	s.		MARKS		
SEM	PART	SUBJECT CODE	TITLE OF THE SUBJECT		Lab	CREDIT	CIA	EA	TOTAL
		23U5PHC05	Core - V : Atomic Physics and Lasers	6	-	5	25	75	100
		23U5PHC06	Core - VI : Relativity and Quantum Mechanics	6	-	5	25	75	100
	III	23U5PHE05	SEC - 8 : Numerical Methods and C Programming	6		4	25	75	100
		23U5PHE01	SEC - 9 : Communication Systems	5	-	4	25	75	100
V		23U5PHCP05	Core Practical – V : Spectrometer and Electricity	-	3	2	25	75	100
			Value Education	2	-	2	25	75	100
	IV		Internship / Industrial Visit / Field Visit	2	-	2	-	-	-
			Total	27	3	24	150	450	600

SEMESTER - VI

				H	rs.			MARKS	5
SEM	PART	SUBJECT CODE	TITLE OF THE SUBJECT	Lect.	Lab	CREDIT	CIA	EA	TOTAL
		23U6PHC07	Core - VII : Nuclear and Particle Physics	6	-	5	25	75	100
		23U6PHC08	Core - VIII : Solid State Physics	6	-	3	25	75	100
	III	23U6PHE11	SEC - 10 : Digital Electronics and Microprocessor 8085	6		3	25	75	100
VI		23U6PHE09	SEC - 11 : Nano Science and Nano Technology	5	-	3	25	75	100
		23U6PHCP06	Core Practical - VI : Electronics	-	3	2	25	75	100
		23U6PHPR01	Core - IX : Project	1	1	2	25	75	100
			Professional Competency Skill	2	-	2	25	75	100
	IV		Extension Activity	-	-	1	-	-	-
			Total	26	4	21	175	525	700

B.Sc., PHYSICS SYLLABUS

Preamble

Physics is one of the basic and fundamental sciences. The curriculum for the graduate programme in Physics is revised as per the UGC guidelines on Learning Outcome based Course Framework. The learner-centric courses let the student progressively develop a deeper understanding of various aspects of physics.

The new curriculum offer courses in the core areas of mechanics, acoustics, optics and spectroscopy, electricity and magnetism, atomic and nuclear physics, solid state, electronicsand other fields. The courses will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. In addition to the theoretical course work, the students also learn physics laboratory methods for different branches of physics, specialized measurement techniques, analysis of observational data, including error estimation and etc. The students will have deeper understanding of laws of nature through the subjects like classical mechanics, quantum mechanics, statistical physics etc. The problem solving ability of students will be enhanced. The students can apply principles in physics to real life problems. The courses like integrated electronics and microprocessors will enhance the logical skills as well as employability skills. The numerical methods and mathematical physics provide analytical thinking and provides a better platform for higher level physics for research.

The restructured courses with well-defined objectives and learning outcomes, provide guidance to prospective students in choosing the elective courses to broaden their skills not only in the field of physics but also in interdisciplinary areas. The elective modules of the framework offer students choice to gain knowledge and expertise in specialized domains of physics like astrophysics, medical physics, etc.

TANSCHE REC	GULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM
	FRAMEWORK FOR
	UNDERGRADUATE EDUCATION
Programme	B.Sc., Physics
Programme	
Code	
Duration	3 years [UG]
Programme	PO1: Disciplinary knowledge:
Outcomes:	Capable of demonstrating comprehensive knowledge and understanding
(These are	of one or more disciplines that form a part of an undergraduate
mereguidelines	programme of study
. Faculty can	PO2: Communication Skills:
create POs	Ability to express thoughts and ideas effectively in writing and orally
based on their	communicate with others using appropriate media; confidently share
curriculum or	one's views and express herself/himself; demonstrate the ability to listen
adopt from	carefully; read and write analytically and present complex information in
UGC or the	a clear and concise manner to different groups.
University for	PO3: Critical thinking:
their	Capability to apply the analytic thought to a body of knowledge; analyse
Programme)	and evaluate the proofs, arguments, claims, beliefs on the basis of
	empirical evidences; identify relevant assumptions or implications;
	formulate coherent arguments; critically evaluate practices, policies and
	theories by following scientific approach.
	PO4: Problem solving:

Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's learning to real life situations.

PO5: Analytical reasoning:

Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples, and addressing opposing viewpoints.

PO6: Research-related skills:

A sense of inquiry and capability for asking relevant/appropriate questions, problem arising, synthesising and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, establish hypotheses, predict cause-and-effect relationships; ability to plan, execute and report the results of an experiment or investigation

PO7: Cooperation/Team work:

Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team

PO8: Scientific reasoning:

Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.

PO9: Reflective thinking:

Critical sensibility to lived experiences, with self-awareness and reflexivity of both self and society.

PO10 Information/digital literacy:

Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data.

PO 11 Self-directed learning:

Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.

PO 12 Multicultural competence:

Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and interact respectfully with diverse groups.

PO 13: Moral and ethical awareness/reasoning:

Ability toembrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstratingthe ability to identify ethical issues related to one's work, avoid unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.

	PO 14: Leadership readiness/qualities:
	Capability for mapping out the tasks of a team or an organization, and
	setting direction, formulating an inspiring vision, building a team who
	can help achieve the vision, motivating and inspiring team members to
	engage with that vision, and using management skills to guide people to
	the right destination, in a smooth and efficient way.
	PO 15: Lifelong learning:
	Ability to acquire knowledge and skills, including "learning how to
	learn", that are necessary for participating in learning activities
	throughout life, through self-paced and self-directed learning aimed at
	personal development, meeting economic, social and cultural objectives,
	and adapting to changing trades and demands of work place through
D	knowledge/skill development/reskilling.
Programme	PSO1: Placement:
Specific	To prepare the students who will demonstrate respectful engagement
Outcomes:	with others' ideas, behaviors, and beliefs and apply diverse frames of
	reference to decisions and actions.
(These are	PSO 2: Entrepreneur:
mere	To create effective entrepreneurs by enhancing their critical thinking,
guidelines.	problem solving, decision making and leadership skill that will facilitate
Faculty can	start-ups and high potential organizations
create POs	PSO3: Research and Development:
based on their	Design and implement HR systems and practices grounded in research
curriculum or	that comply with employment laws, leading the organization towards
adopt from	growth and development.
UGC or	PSO4: Contribution to Business World:
University for	To produce employable, ethical and innovative professionals to sustain in
their	the dynamic business world.
Programme)	PSO 5: Contribution to the Society:
	To contribute to the development of the society by collaborating with
	stakeholders for mutual benefit

Credit Distribution for all UG courses with LAB Hours

Part	List of Courses	Credit	No. of Hours
Dout 1	Language	2	
Part-1	Language	3	6
Part-2	English	3	4
Part-3	Core Courses & Allied Courses [in Total]	11	14
	Skill Enhancement Course SEC-1 (NME)	2	2
Part-4	Foundation Course	2	2
	Ability Enhancement Compulsory Course(AECC) Soft Skill-1	2	2
		23	30

First Year

Semester-II

Part	List of Courses	Credit	No. of
			Hours
Part-1	Language	3	6
Part-2	English	3	4
Part-3	Core Courses & Allied Courses including laboratory [in Total]	12	14
Part-4	Skill Enhancement Course -SEC-2 (NME)	2	2
	Skill Enhancement Course -SEC-3 (Discipline/Subject Specific)	2	2
	Ability Enhancement Compulsory Course(AECC) Soft Skill-2	2	2
		24	30

Second Year

Semest	er-III		
Part	List of Courses	Credit	No. of
			Hours
Part-1	Language	3	6
Part-2	English	3	4
Part-3	Core Courses & Allied Courses including laboratory [in Total]	11	13
Part-4	Skill Enhancement Course -SEC-4 (Entrepreneurial Based)	2	2
	Skill Enhancement Course -SEC-5 (Discipline / Subject Specific)	2	2
	Ability Enhancement Compulsory Course (AECC) Soft Skill-3	2	2
	E.V.S	-	1
		23	30

Semester-IV

Part	List of Courses	Credit	No. of Hours
Part-1	Language	3	6
Part-2	English	3	4
Part-3	Core Courses & Allied Courses including laboratory [in Total]	12	12
Part-4	Skill Enhancement Course -SEC-6 (Discipline / Subject Specific)	2	2
	Skill Enhancement Course -SEC-7 (Discipline / Subject Specific)	2	2
	Ability Enhancement Compulsory Course (AECC) Soft Skill-4	2	2
	E.V.S	2	2
		25	30

Third Year

Part	List of Courses	Credit	
			Hours
Part-3	Core Courses including Project / Elective Based	20	26
Part-4	Value Education	2	2
	Internship / Industrial Visit / Field Visit	2	2
		24	30

Semester-VI

Part	List of Courses	Credit	
			Hours
Part-3	Core Courses including Project / Elective Based & LAB	18	28
Part-4	Extension Activity	1	-
	Professional Competency Skill	2	2
		21	30

DISCIPLINE SPECIFIC ELECTIVES

- 1. COMMUNICATION SYSTEMS
- 2. ENERGY PHYSICS
- 3. MATHEMATICAL PHYSICS
- 4. ADVANCED MATHEMATICAL PHYSICS
- 5. NUMERICAL METHODS AND C PROGRAMMING
- 6. MATERIALS SCIENCE
- 7. LASERS AND FIBER OPTICS
- 8. DIGITAL PHOTOGRAPHY
- 9. NANO SCIENCE
- 10. MEDICAL INSTRUMENTATION

NON-MAJOR ELECTIVES

- 1. PHYSICS FOR EVERYDAY LIFE
- 2. ASTROPHYSICS
- 3. MEDICAL PHYSICS
- 4. HOME ELECTRICAL INSTALLATION
- 5. PHYSICS OF MUSIC

SEMESTER - I	
--------------	--

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics	
Course Code	23U1PHF01	Title	Batch	2023 - 2026
Hrs/Week	<i>L</i>	FOUNDATION COURSE : INTRODUCTORY PHYSICS	Semester Credits	I 2

COURSE	FIRST SEMESTER - FOUNDATION COURSE
COURSETITLE	INTRODUCTORY PHYSICS
CREDITS	2
COURSE	To help students get an overview of Physics before learning their core courses.
OBJECTIVES	To serve as a bridge between the school curriculum and the degree programme.

UNITS	COURSE DETAILS
UNIT-I	vectors, scalars –examples for scalars and vectors from physical quantities – addition, subtraction of vectors – resolution and resultant of vectors – units and dimensions– standard physics constants
UNIT-II	different types of forces–gravitational, electrostatic, magnetic, electromagnetic, nuclear –mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces
UNIT-III	different forms of energy– conservation lawsof momentum, energy – typesof collisions –angular momentum– alternate energy sources–real life examples
UNIT-IV	types of motion– linear, projectile, circular, angular, simple harmonic motions – satellite motion – banking of a curved roads – stream line and turbulent motions – wave motion – comparisonof light and sound waves – free, forced, damped oscillations
UNIT-V	surface tension – shape of liquid drop – angle of contact – viscosity –lubricants – capillary flow – diffusion – real life examples– properties and types of materials in daily use- conductors, insulators – thermal and electric
TEXT BOOKS	 D.S.Mathur, 2010, Elements of Properties of Matter, S.Chand & Co BrijLal & N. Subrahmanyam, 2003, Properties of Matter, S.Chand & Co.
REFERENCEBOO KS	1. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, S.Chand & Co.
WEBLINKS	 <u>http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/</u> <u>https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_hays/</u>

Continuous InternalAssessment	End SemesterExamination	Total	Grade
25	75	100	

COURSEOUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Apply concept of vectors to understand concepts of Physics and solve problems
	CO2	Appreciate different forces present in Nature while learning about phenomena related to these different forces.
COURSEOUT COMESCO3Quantify energy in different process and rela and energy		Quantify energy in different process and relate momentum, velocity and energy
	CO4	Differentiate different types of motions they would encounter in various courses and understand their basis
	CO5	Relate various properties of matter with their behaviour and connect them with different physical parameters involved.

MAPPINGWITHPROGRAMOUTCOMES:

 $\label{eq:main_second} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG(S), MEDIUM(M) and LOW(L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	S	S	S	М	Μ	S

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics	
Course Code	23U1PHC01	Title	Batch	2023 - 2026
Hrs/Week	5	CORE – I :	Semester	Ι
		PROPERTIES OF MATTER AND SOUND	Credits	3

COURSE	FIRST SEMESTER –CORE
COURSETITLE	PROPERTIES OF MATTER AND SOUND
CREDITS	3
COURSE	Study of the properties of matter leads to information which is of practical value
OBJECTIVES	to both the physicist and the engineers. It gives us information about the internal forces which act between the constituent parts of the substance. Students who undergo this course are successfully bound to get a better insight and understanding of the subject.

UNITS	COURSEDETAILS
UNIT-I	ELASTICITY: Hooke's law – stress-strain diagram – elastic constants –Poisson's ratio – relation between elastic constants and Poisson's ratio – work done in stretching and twisting a wire – twisting couple on a cylinder – rigidity modulus by static torsion– torsional pendulum (with and without masses)
UNIT-II	BENDING OF BEAMS: cantilever– expression for Bending moment – expression for depression at the loaded end of the cantilever– oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscope
UNIT-III	FLUID DYNAMICS: <i>Surface tension</i> : definition – molecular forces– excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature <i>Viscosity</i> :definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula– variation of viscosity with temperature
UNIT-IV	 WAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations – resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer –determination of frequency using Melde's string apparatus
UNIT-V	ACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. <i>Ultrasonic waves</i> : production of ultrasonic waves – Piezoelectric crystal method – magnetostriction effect – application of ultrasonic waves

	1. D.S.Mathur, 2010, Elements of Properties of Matter,
	S.Chand & Co.
	2. BrijLal & N. Subrahmanyam, 2003, Properties of Matter, S.Chand & Co
TEXT BOOKS	3. D.R.Khanna & R.S.Bedi, 1969, Textbook of Sound, AtmaRam & sons
	4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound, Second revised
	edition, Vikas Publishing House.
	5. R.Murugesan,2012, Properties of Matter, S.Chand& Co.
	1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers
REFERENCE	2. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth
BOOKS	edition, R. Chand & Co.
DUUKS	3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-
	Heinmann India.
	1. <u>https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-</u>
	<u>they-work</u>
	2. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html</u>
	3. <u>https://www.youtube.com/watch?v=gT8Nth9NWPM</u>
WEBLINKS	 4. <u>https://www.youtube.com/watch?v=m4u-SuaSu1s&t=3s</u> 5. <u>https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-</u>
	they-work
	6. <u>https://learningtechnologyofficial.com/category/fluid-mechanics-lab/</u>
	7. <u>http://www.sound-physics.com/</u>
	8. <u>http://nptel.ac.in/courses/112104026/</u>

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Relate elastic behavior in terms of three modulii of elasticity and working of torsion pendulum.			
	CO2	Able to appreciate concept of bending of beams and analyze the expression, quantify and understand nature of materials.			
	CO3	Explain the surface tension and viscosity of fluid and support the interesting phenomena associated with liquid surface, soap films provide an analogue solution to many engineering problems.			
COURSEOUTCO MES		Analyze simple harmonic motions mathematically and apply them. Understand the concept of resonance and use it to evaluate the frequency of vibration. Set up experiment to evaluate frequency of ac mains			
	CO5	Understand the concept of acoustics, importance of constructing buildings with good acoustics. Able to apply their knowledge of ultrasonics in real life, especially in medical field and assimilate different methods of production of ultrasonic waves			

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	М	S	М	М	S	Μ	S
CO2	М	S	S	S	Μ	Μ	S	М	S	S
CO3	S	М	S	М	S	S	М	S	S	S
CO4	S	S	S	S	S	Μ	S	М	Μ	М
CO5	Μ	М	S	S	М	S	S	S	S	М

 $\label{eq:mapping} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG (S), MEDIUM (M) and LOW (L).$

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U1PHCP01	Title	Batch	2023 - 2026
Hrs/Week	3	CORE PRACTICALS – I :	Semester	Ι
		Properties of Matter	Credits	3

COURSE	FIRST SEMESTER - CORE
COURSETITLE	CORE PRACTICALS
CREDITS	3
COURSE OBJECTIVES	Apply various physics concepts to understand Properties of Matter, set up experimentation to verify theories, quantify and analyse, able to do error analysis
	and correlate results

Properties of Matter

- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum.
- 3. Determination of moment of inertia of an irregular body.
- 4. Verification of parallel axes theorem on moment of inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. Determination of moment of inertia and g using Bifilar pendulum.
- 7. Determination of Young's modulus by stretching of wire with known masses.
- 8. Verification of Hook's law by stretching of wire method.
- 9. Determination of Young's modulus by uniform bending load depression graph.
- 10. Determination of Young's modulus by non-uniform bending scale & telescope.
- 11. Determination of Young's modulusby cantilever load depression graph.
- 12. Determination of Young's modulus by cantilever oscillation method
- 13. Determination of Young's modulus by Koenig's method (or unknown load)
- 14. Determination of rigidity modulus by static torsion.
- 15. Determination of Y, n and K by Searle's double bar method.
- 16. Determination of surface tension & interfacial surface tension by drop weight method.
- 17. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 18. Determination of critical pressure for streamline flow.
- 19. Determination of Poisson's ratio of rubber tube.
- 20. Determination of viscosity by Poiseullie's flow method.
- 21. Determination radius of capillary tube by mercury pellet method.
- 22. Determination of g using compound pendulum.

METHOD OF EVALUATION:

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)		
Course Code	23U2PHC02	Title	Batch	2023 - 2026	
Hrs/Week	5	CORE – II :	Semester	II	
		Heat, ThermodynamicsandStatist icalPhysics	Credits	3	

COURSE	SECOND SEMESTER - CORE
COURSETITLE	Heat, ThermodynamicsandStatisticalPhysics – Core 3
CREDITS	3
COURSE OBJECTIVES	The course focuses to understand a basic in conversion of temperature in Celsius, Kelvin and Fahrenheit scales. Practical exhibition and explanation of transmission of heat in good and bad conductor. Relate the laws of thermodynamics, entropy in everyday life and explore the knowledge of statistical mechanics and its relation

UNITS	COURSEDETAILS
	CALORIMETRY: specific heat capacity – specific heat capacity of gases
	$C_P\& C_V$ - Meyer's relation – Joly's method for determination of C_V –
	Regnault's method for determination of C _P
UNIT-I	LOWTEMPERATUREPHYSICS: Joule-Kelvin effect – porous plug
	experiment – Joule-Thomson effect –Boyletemperature – temperature of
	inversion – liquefaction of gas by Linde's Process – adiabatic
	demagnetisation.
	THERMODYNAMICS-I: zeroth law and first law of thermodynamics – P-
UNIT-II	V diagram – heat engine –efficiency of heat engine – Carnot's engine,
01111-11	construction, working and efficiency of petrol engine and diesel engines –
	comparison of engines.
	THERMODYNAMICS-II: second law of thermodynamics entropy of an
	ideal gas – entropy change in reversible and irreversible processes – T-S
	diagram -thermodynamicalscale of temperature - Maxwell's
UNIT-III	thermodynamical relations – Clasius-Clapeyron's equation (first latent heat
	equation) – third law of thermodynamics – unattainability of absolute zero –
	heat death.
	HEATTRANSFER: modes of heat transfer: conduction, convection and
	radiation.
	<i>Conduction</i> : thermal conductivity – determination of thermal conductivity of
	a good conductor by Forbe's method – determination of thermal conductivity
UNIT-IV	of a bad conductor by Lee's disc method.
	<i>Radiation</i> : black body radiation (Ferry's method) – distribution of energy in
	black body radiation – Wien's law and Rayleigh Jean's law –Planck's law of
	radiation – Stefan's law – deduction of Newton's law of cooling from
	Stefan's law.

UNIT-V	STATISTICALMECHANICS: definition of phase-space – micro and macro states – ensembles –different types of ensembles – classical and quantum Statistics – Maxwell-Boltzmann statistics – expression for distribution function – Bose-Einstein statistics – expression for distribution function – Fermi-Dirac statistics – expression for distribution function – comparison of three statistics.
TEXT BOOKS	 Brijlal &N. Subramaniam, 2000, Heat and Thermodynamics, S.Chand& Co. Narayanamoorthy&KrishnaRao, 1969,Heat,Triveni Publishers, Chennai. V.R.Khanna&R.S.Bedi, 1998 1st Edition, Text book of Sound, Kedharnaath Publish & Co, Meerut Brijlal and N. Subramanyam, 2001, Waves and Oscillations,Vikas Publishing House, New Delhi. Ghosh, 1996, Text Book of Sound, S.Chand&Co. R.Murugeshan & Kiruthiga Sivaprasath, Thermal Physics, S.Chand& Co.
REFERENCEBOOKS	 J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S.Chand& Co. Ltd. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand & Co. Resnick, Halliday&Walker,2010, Fundamentals of Physics, 6th Edition. Sears, Zemansky, Hugh D. Young,Roger A. Freedman, 2021 University Physics with Modern Physics 15th Edition, Pearson.
WEBLINKS	 <u>https://youtu.be/M_5KYncYNyc</u> <u>https://www.youtube.com/watch?v=4M72kQulGKk&vl=en</u>

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

COURSEOUT COMES	CO1	Acquires knowledge on how to distinguish between temperature and heat. Introduce him/her to the field of thermometry and explain practical measurements of high temperature as well as low temperature physics. Student identifies the relationship between heat capacity, specific heat capacity. The study of Low temperature Physics sets the basis for the students to understand cryogenics, superconductivity,
	CO2	superfluidity and Condensed Matter Physics Derive the efficiency of Carnot's engine. Discuss the
	02	implications of the laws of Thermodynamics in diesel and
		petrol engines

CO3 CO4	Able to analyze performance of thermodynamic systems viz efficiency by problems. Gets an insight into thermodynamic properties like enthalpy, entropy Study the process of thermal conductivity and apply it to good and bad conductors. Quantify different parameters related to heat, relate them with various physical parameters and analyse them
CO5	Interpret classical statistics concepts such as phase space, ensemble, Maxwell-Boltzmann distribution law. Develop the statistical interpretation of Bose-Einstein and Fermi-Dirac . Apply to quantum particles such as photon and electron

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:mapping} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG(S), MEDIUM(M) and LOW(L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	Μ
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	S	М	S	S	S	М	М	S	М

Programme Code	B.Sc.,	Programme Title	Bachelor of Sci	ence (Physics)
Course Code	23U2PHCP02	Title	Batch	2023 - 2026
Hrs/Week	3	CORE PRACTICALS – II :	Semester	II
		HEAT, OSCILLATIONS, WAVES & SOUND	Credits	3

COURSE	SECOND SEMESTER - CORE			
COURSETITLE	CORE PRACTICALS			
CREDITS	2/3			
COURSE Apply their knowledge gained about the concept of heat and sound way				
OBJECTIVES	resonance, calculate frequency of ac mains set up experimentation to verify			
	theories, quantify and analyse, able to do error analysis and correlate results			
HEAT, OSC	ILLATIONS, WAVES & SOUND(Any Eight of the below list)			
1. Determination of spec	cific heat by cooling – graphical method.			
2. Determination of ther	2. Determination of thermal conductivity of good conductor by Searle's method.			
3. Determination of ther	3. Determination of thermal conductivity of bad conductor by Lee's disc method.			
4. Determination of ther	. Determination of thermal conductivity of bad conductor by Charlaton's method.			
5. Determination of spec	Determination of specific heat capacity of solid.			
6. Determination of spec	Determination of specific heat of liquid by Joule's electrical heating method (applying radiation			
correction by Barton's	correction by Barton's correction/graphical method),			
7. Determination of Late	Determination of Latent heat of a vaporization of a liquid.			
8. Determination of Stef	Determination of Stefan's constant for Black body radiation.			
9. Verification of Stefan	Verification of Stefan's-Boltzmans law.			
10. Determination of ther	Determination of thermal conductivity of rubber tube.			
11. Helmholtz resonator.				
12. Velocity of sound thro	bugh a wire using Sonometer.			

- 13. Determination of velocity of sound using Kunds tube.
- 14. Determination of frequency of an electrically maintained tuning fork
- 15. To verify the laws of transverse vibration using sonometer.
- 16. To verify the laws of transverse vibration using Melde's apparatus.
- 17. To compare the mass per unit length of two strings using Melde's apparatus.
- 18. Frequency of AC by using sonometer.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Sci	ence (Physics)
Course Code	23U3PHC03	Title	Batch	2023 - 2026
Hrs/Week	4	CORE – III :	Semester	III
		GENERAL MECHANICS AND CLASSICAL MECHANICS	Credits	3

COURSE	THIRD SEMESTER - CORE
COURSETITLE	GENERAL MECHANICS AND CLASSICAL MECHANICS
CREDITS	3
COURSE	This course allows the students: To have a basic understanding of the laws
OBJECTIVES	and principles of mechanics; To apply the concepts of forces existing in the
	system; To understand the forces of physics in everyday life; To visualize
	conservation laws; To apply Lagrangian equation to solve complex problems.

UNITS	COURSEDETAILS
UNIT-I	LAWS OF MOTION: Newton's Laws- forces - equations of motion - frictional force - motion of aparticlein a uniformgravitational field - types of everyday forces in Physics.Gravitation: Classical theory of gravitation-Kepler's laws, Newton's law of gravitation - Determination of G by Boy's method - Earth-moon system - weightlessness - earth satellites - parking orbit - earth density - mass of the Sun - gravitational potential - velocity of escape - satellite potential and kinetic energy -Einstein's theory of gravitation - introduction -principle of equivalence - experimental tests of general theory of relativity -
UNIT-II	gravitational red shift – bending of light – perihelion of mercury.CONSERVATION LAWS OF LINEAR AND ANGULARMOMENTUM: conservation of linear and angular momentum – Internalforces andmomentum conservation – center of mass – examples – generalelastic collision of particles of different masses – system with variable mass– examples – conservation of angular momentum – torque due to internalforces – torque due to gravity – angular momentum about center of mass –proton scatteringby heavy nucleus.
UNIT-III	CONSERVATION LAWS OF ENERGY: Introduction – significance of conservation laws – law of conservation of energyconcepts of work- power – energy – conservative forces – potential energy and conservation of energy ingravitational and electric field – examples –non-conservative forces – general law of conservation of energy.RIGID BODY DYNAMICS: translational and rotational motion – angular
UNIT-IV	momentum – moment of inertia – general theorems of moment of inertia – examples – rotation about fixed axis – kinetic energy of rotation – examples – body rollingalong a plane surface – body rolling down an inclined plane – gyroscopic precision – gyrostatic applications.

	LAGRANGIAN MECHANICS: generalized coordinates –degrees of
UNIT-V	freedom – constraints - principle of virtual work and D' Alembert's
UNII-V	Principle – Lagrange's equation from D' Alembert's principle – application
	-simple pendulum – Atwood's machine.
	1. J.C.Upadhyaya, 2019, Classical Mechanics, Himalaya Publishing house,
	Mumbai.
	2. P.DuraiPandian, LaxmiDuraiPandian, MuthamizhJayapragasam, 2005,
	Mechanics, 6 th revised edition,
	S.Chand& Co.
TEXT BOOKS	3. D. S. Mathur & P. S. Hemne, 2000, Mechanics, Revised Edition,
	S.Chand& Co.
	4. Narayanamurthi, M.&Nagarathnam. N, 1998, Dynamics. The National
	Publishing, Chennai.
	5. Narayanamurthi, M. and Nagarathnam, N, 1982, Statics, Hydrostatics
	and Hydrodynamics, The National Publishers, Chennai.
	1. Goldstein Herbert, 1980, Classical Mechanics. U.S.A: Addison and
	Wesely.
REFERENCEBOOKS	2. Halliday, David & Robert, Resnick, 1995, Physics Vol.I. New Age,
REFERENCEDUURS	International, Chennai.
	3. Halliday, David Robert Resnick and Walker Jearl, 2001, Fundamentals
	of Physics, John Wiley, New Delhi
	1. <u>https://youtu.be/X4_K-XLUIB4</u>
	2. https://nptel.ac.in/courses/115103115
	3. https://www.youtube.com/watch?v=p075LPq3Eas
WEBLINKS	4. <u>https://www.youtube.com/watch?v=mH_pS6fruyg</u>
	5. https://onlinecourses.nptel.ac.in/noc22_me96/preview_
	6. <u>https://www.youtube.com/watch?v=tdkFc88Fw-M</u>
	7. https://onlinecourses.nptel.ac.in/noc21_me70/preview

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Understand the Newton's Law of motion, understand general theory of relativity, Kepler's laws and Realize the basic principles behind planetary motion			
	CO2	Acquire the knowledge on the conservation laws			
COURSEOU	CO3	Apply conservation law and calculate energy of various			
TCOMES		systems, understand and differentiate conservative and non-			
		conservative forces			
	CO4	Gain knowledge on rigid body dynamics and solve problems			
		based on this concept			
	CO5	Appreciate Lagrangian system of mechanics, apply D'			
		Alemberts principle			

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:mapping} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG(S), MEDIUM(M) and LOW(L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	М	S	S
CO2	S	S	S	М	S	М	S	S	S	М
CO3	S	S	S	S	S	S	М	S	М	S
CO4	Μ	S	S	S	М	S	S	М	S	S
CO5	S	S	М	S	S	М	S	S	S	М

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)		
Course Code	23U3PHCP03	Title	Batch	2023 - 2026	
Hrs/Week	3	CORE PRACTICALS – III :	Semester	III	
		ELECTRICITY	Credits	3	

COURSE	THIRD SEMESTER - CORE				
COURSETITLE	CORE PRACTICALS				
CREDITS	2/3				
COURSE	Construct circuits to learn about the concept of electricity, current, resistance				
OBJECTIVES	in the path of current, different parameters that affect a circuit. Set up				
	experiments, observe, analyse and assimilate the concept				
	ELECTRICITY (any eight experiments)				
1. Calibration of low	range and high range voltmeter using potentiometer				
2. Calibration of am	meter using potentiometer.				
3. Measurement of le	ow resistances using potentiometer.				
4. Determination of field along the axis of a current carrying circular coil.					
5. Determination of earth's magnetic field using field along axis of current carrying coil.					
6. Determination of specific resistance of the material of the wire usingPO box.					
7. Determination of resistance and specific resistance using Carey Foster's bridge.					
8. Determination of internal resistance of a cell using potentiometer.					
9. Determination of	specific conductance of an electrolyte.				
10. Determination of	e.m.f of thermo couple using potentiometer				
11 Determination of canacitance using Desauty's bridge and B G /Spot galvanometer/head phone					

- 11. Determination of capacitance using Desauty's bridge and B.G./Spot galvanometer/head phone.
- 12. Determination of figure of merit of BG or spot galvanometer.
- 13. Comparison of EMF of two cells using BG.
- 14. Comparison of capacitance using BG.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U4PHC04	Title	Batch	2023 - 2026
Hrs/Week	4	CORE – IV :	Semester	IV
		OPTICS AND SPECTROSCOPY	Credits	3

COURSE	FOURTH SEMESTER - CORE
COURSETITLE	OPTICS AND SPECTROSCOPY
CREDITS	3
COURSE OBJECTIVES	To provide an in-depth understanding of the basics of various phenomena in geometrical and wave optics; To explain the behaviour of light in different mediums; To understand the differences in the important phenomena namely interference, diffraction and Polarization and apply the knowledge in day to day life; To understand the design of optical systems and methods to minims aberrations; To solve problems in optics by selecting the appropriate equations and performing numerical or analytical calculations.

UNITS	COURSEDETAILS
UNIT-I	LENS AND PRISMS: Fermat's principle of least time – postulates of geometrical optics – thick and thin lenses – focal length, critical thickness, power and cardinal points of a thick lens – narrow angled prisms. Lens: lens makers formula (no derivation) – aberrations: spherical aberration, chromatic aberrations, coma, and astigmatism – curvature of the field – distortion – chromatic aberrations methods. Prism: dispersion, deviation, aberrations - applications rainbows and halos, constant deviation spectroscope. Eyepieces: advantage of an eyepiece over a simple lens – Huygen's and Ramsden's eyepieces, construction and working –merits and demerits of the eyepiece. Resolving power: Rayleigh's criterion for resolution – limit of resolution for the eye – resolving power of, (i) Prism (ii) grating (iii) telescope
UNIT-II	INTERFERENCE: division of wave front, Fresnel's biprism – fringes with white light – division of amplitude: interference in thin films due to, (i) reflected light, (ii) transmitted light – colours of thin films applications – air wedge – Newton's rings. <i>Interferometers</i> : Michelson's interferometer – applications, (i) determination of the wavelength of a monochromatic source of light, (ii) determination of the wavelength and separation D_1 and D_2 lines of sodium light, (iii) determination of a thickness of a mica sheet.
UNIT-III	DIFFRACTION: Fresnel's assumptions – zone plate – action of zone plate for an incidentspherical wave front – differences between a zone plate and a convex lens –Fresnel type ofdiffraction – diffraction pattern due to a straight edge – positions of maximum andminimum intensities – diffraction due to a narrow slit – Fraunhofer type of diffraction –Fraunhofer diffraction at a single slit – plane diffraction grating– experiment to determinewavelengths – width of principal maxima.
UNIT-IV	POLARISATION: optical activity – optically active crystals –polarizer and analyser– double refraction – optic axis, principal plane – Huygens's explanation of double refraction

	in uniaxial crystals – polaroids and applications – circularly and elliptically polarized light –
	quarter wave plate – half wave plate – production and detection of circularly and
	elliptically polarized lights – Fresnel's explanation – specific rotation – Laurent half shade
	polarimeter – experiment to determine specific rotatory power.
	SPECTROSCOPY: infra-red spectroscopy near infra-red and far infra-red – properties –
	origin of IRspectra – IR spectrophotometer – applications interpretation of IR spectra –
	CH, CO, CN bending and stretching vibrational modes only – scattering of light – Raman
UNIT-V	effect –classical theory –quantum theory –mutual exclusion principle – Raman
	spectrometer- characteristics of Raman lines –applications – ultraviolet and visible
	spectroscopy –properties – spectrophotometer.
	1. Subramaniam. N&Brijlal, 2014,Optics, 25 th edition,S.Chand &Co.
	 Subrahamani, N&Brijiai, 2014, Optics, 25⁻ edition, S. Chand & Co. S.L.Gupta, V.Kumar & R.C.Sharma, 1997, Elements of Spectroscopy, 13th Edition,
	Pragati Prakashan, Meerut.
TEXT	
BOOKS	 G.Aruldhass,2000,Molecular Structure and Spectroscopy,II edition.PHIPvt Ltd, New Delhi.
DOORS	4. P.R.Sasikumar, 2012, Photonics, PHIPvt Ltd, New Delhi.
	5. K.Rajagopal, 2008, Engineering Physics, PHIPvt Ltd, New Delhi.
	 K.Kajagopai, 2008, Engineering Physics, 1111 V. Ed., New Denn. V.Rajendran, 2012, Engineering Physics, Tata McGraw Hill.
	1. Agarwal B.S, 2011,Optics, KedernathRamnath Publishers, Meerut.
	2. Sathyaprakash, 1990,Optics,VII edition, RatanPrakashanMandhir, New Delhi.
	3. C.N.Banewell, 2006, Introduction to Molecular Spectroscopy,IV edition,TMH
	Publishing Co, New Delhi.
REFEREN	7. 4. AjoyGhatak, 2009,Optics, 4 th edition, PHIPvt Ltd, New Delhi.
CEBOOKS	5. Singh & Agarwal, 2002, Optics and Atomic Physics, 9 th edition, PragatiPrakashan Meerut.
CEDUUKS	 5. Singh & Agai wai, 2002, Optics and Atomic Physics, 9 edition, Pragath Takashan Meerut. 6. D.Halliday, R.Resnick and J. Walker, 2001, Fundamentals of Physics, 6th edition, Willey,
	New York.
	7. JenkinsA.Francis & White, 2011, Fundamentals of Optics, 4th edition, McGraw Hill
	Inc., NewDelhi.
	1. <u>https://science.nasa.gov/ems/</u>
	2. https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCMUCzwo7UlGkb-
	<u>8Pr6svxWo-LA&start_radio=1&t=2472</u>
	3. https://science.nasa.gov/ems/
WEBLINKS	3. <u>https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCMUCzwo7UlGkb-</u>
	8Pr6svxWo-LA&start radio=1&t=2472
	4. <u>https://imagine.gsfc.nasa.gov/educators/gammaraybursts/imagine/index.html</u>
	6. <u>http://www.thephysicsmill.com/2014/03/23/sky-blue-lord-rayleigh-sir-raman-scattering/</u>
	5. http://www.thephysicsmill.com/2014/03/23/sky-blue-lord-rayleigh-sir-raman-scattering/
	5. http://www.thephysicshint.com/2014/05/25/SKy-blue-fold-fayleigh-sit-failall-scattering/

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Outline basic knowledge of methods of rectifying different defects in lenses, articulate technological applications of eyepieces
	CO2	Discuss the principle of superposition of wave, use these ideas to understand the wave nature of light through working of interferometer
COURSEOU TCOMES	CO3	Extend the knowledge about nature of light through diffraction techniques; apply mathematical principles to analyse the optical instruments
	CO4	Interpret basic formulation of polarization and gain knowledge about polarimeter, appraise its usage in industries
	CO5	Relate the principles of optics to various fields of IR, Raman and UV spectroscopy and understand their instrumentation and application in industries

MAPPING WITH PROGRAM OUT COMES:

Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG(S), MEDIUM(M) and LOW(L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	М	М	М	S	S	М	М
CO2	М	S	М	S	М	S	М	М	S	S
CO3	S	М	S	S	S	М	S	S	М	М
CO4	S	М	S	М	М	S	М	М	S	М
CO5	S	М	S	М	S	S	М	S	S	S

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U4PHCP04	Title	Batch	2023 - 2026
Hrs/Week	3	CORE PRACTICALS - IV :	Semester	IV
		LIGHT	Credits	3

COURSE	FOURTH SEMESTER - CORE			
COURSETITLE	CORE PRACTICALS			
CREDITS	2/3			
COURSE	Demonstrate various optical phenomena principles, working, apply with various			
OBJECTIVES	materials and interpret the results.			
	LIGHT(any eight experiments)			
1. Determination of refra	active index of prism using spectrometer.			
2. Determination of refra	active index of liquid using hollow prism and spectrometer			
3. Determination of disp	ersive power of a prism.			
4. Determination of radio	us of curvature of lens by forming Newton's rings.			
5. Determination of thick	Determination of thickness of a wire using air wedge.			
6. Determination of Cau	Determination of Cauchy's Constants.			
7. Determination of reso	Determination of resolving power of grating			
8. Determination of reso	Determination of resolving power of telescope			
9. Comparison of intensi	Comparison of intensities using Lummer Brodhum Photometer.			
10. Determination of rang	e of motion using Searlesgoniometer.			
11. Verification of Newto	n's formula for a lens separated by a distance.			
12. Determination of refra	Determination of refractive index of a given liquid by forming liquid lens			
13. Determination of refra	. Determination of refractive index using Laser.			
14. Determination of wav	elengths, particle size using Laser/Monochromatic source.			
15. Determination of reso	lving power of Diffraction grating using Laser			
16. Determination ofwire	using Laser.			

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U5PHC05	Title	Batch	2023 - 2026
Hrs/Week	6	CORE - V :	Semester	V
		ATOMIC PHYSICS AND LASERS	Credits	5

COURSE	FIFTH SEMESTER - CORE
COURSE TITLE	ATOMIC PHYSICS AND LASERS
CREDITS	5
COURSE OBJECTIVES	To study about electric charges, their properties through experiments; To gain knowledge on photoelectric effect; To solve problems based on Einstein's photoelectric equation; To make students understand the development of atom models, quantum numbers, coupling schemes and analysis of magnetic moments of an electrons; To gain knowledge on excitation and ionization potentials, splitting of spectral lines in magnetic and electric fields; To understand the principle, production and applications of lasers.

UNITS	COURSE DETAILS
UNIT-I	THE ELECTRON AND POSITIVE RAYS: e/m of electronby Dunnington's method –charge of electron by Millikan's oil drop method – properties of positive rays –e/m of positive rays by Thomson's parabola method (<i>problems calculation of e/m ratio of positive rays</i>)–mass spectrographs and uses– Bainbridge and Dempster's mass spectrographs
UNIT-II	PHOTOELECTRIC EFFECT: photoelectric emission Leonard's experiment – Richardson and Compton experiment –laws of photoelectric emission – Einstein's photoelectric equation (problems using Einstein's photoelectric equation) –experimental verification by Millikan's method photoelectric cell photoelectric cell –photovoltaic cell – photo conducting cell end – applications of photoelectric cells –photomultiplier. –
UNIT-III	ATOMIC STRUCTURE: Sommerfield's relativistic atom model –vector atom model –various quantum numbers – L-S and J-J coupling – Pauli's exclusion principle –magnetic dipole moment of an electron due to orbital and spin motion – Bohr magneton - Stern and Gerlach experiment – Lande 'g' factor.
UNIT-IV	SPLITTING OF SPECTRAL LINES: excitation, ionisation and critical potentials – Davis and Goucher's method – optical spectra – spectral notation and selection rules – fine structure of sodium D-line – Zeeman effect – experimental arrangement and classical theory of normal Zeeman effect – Larmor's theorem –quantum theory of normal Zeeman effect – anomalous Zeeman effect – explanation of splitting of D ₁ and D ₂ lines of sodium – Paschen Back effect - Stark effect (Qualitative only).

UNIT-V	LASERS: general principles of lasers – properties of lasers action – spontaneous and stimulated emission – population inversion – optical pumping – He-Ne laser (principle and working) – semiconductor laser –laser applications–holography.
TEXT BOOKS	 R. Murugesan, Modern Physics, S. Chand & Co. (All units) (Units I&II- Problems) Brijlal & N. Subrahmanyam, Atomic & Nuclear Physics, S. Chand & Co. (All units) J. B. Rajam, Modern Physics, S. Chand & Co. Sehgal&Chopra, Modern Physics, Sultan Chand, New Delhi Avadhahnulu, An Introduction to Lasers - Theory and Applications, M.N., S.Chand& Co., New Delhi, 2001.
REFERENCE BOOKS	 Perspective of Modern Physics, Arthur Beiser, McGraw Hill. Modern Physics, S. Ramamoorthy, National Publishing & Co. Laser and Non-Linear Optics by B.B.Laud, Wiley Easter Ltd., New York, 1985.
WEBLINKS	 <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html</u> <u>http://makingphysicsfun.files.wordpress.com/2015/01/photoelectric-effect.pptx</u> <u>https://www.khanacademy.org/science/physics/quantum-physics/in-in-nuclei/v/types-of-decay</u> <u>https://www.khanacademy.org/science/in-in-class-12th-physics-india/nuclei</u>

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	List the properties of electrons and positive rays, definespecific charge of positive rays, know different mass spectrographs.
	CO2	Outlinephotoelectric effect and the terms related to it, Statelaws of photoelectric emission, Explain experiments and applications of photo electric effect, Solve problems based on photoelectric equation.
COURSE OUT COMES	CO3	Explain different atom models, Describedifferent quantum numbers and different coupling schemes.
	CO4	Differentiate between excitation and ionization potentials, Explain Davis and Goucher's experiment, Apply selection rule, AnalysePaschen- Back effect, Compare Zeeman and Stark effect.
	CO5	Understand the condition for production of laser, Appreciate various properties and applications of lasers.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	Μ	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	М	S	S	S
CO4	М	S	S	S	S	М	S	М	М	М
CO5	S	М	S	S	М	S	S	М	М	S

 $\label{eq:main_second} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG(S), MEDIUM(M) and LOW(L).$

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U5PHC06	Title	Batch	2023 - 2026
Hrs/Week	6	CORE – VI :	Semester	V
		RELATIVITY AND QUANTUM MECHANICS	Credits	5

COURSE	FIFTH SEMESTER – CORE X
COURSETITLE	RELATIVITY AND QUANTUM MECHANICS
CREDITS	5
COURSE OBJECTIVES	To understand the theory of relativity, its postulates and the consequences. To learn the importance of transformation equations and also to differentiate between special and general theory of relativity. To interpret the wave theory of matter with various theoretical and experimental evidences. To derive and use Schrodinger's wave equation and also learn about various operators. To solve Schrodinger's wave equation for simple problems and analyse to understand the solutions.

UNITS	COURSE DETAILS				
	SPECIAL THEORY OF RELATIVITY: Michelson-Morley experiment-frames				
	of reference – Galilean Relativity – postulates of special theory of relativity –				
UNIT-I	Lorentz transformation – consequences – time dilation–concept of simultaneity –				
	Doppler effect – length contraction–variation of mass with velocity – Einstein's				
	mass-energy relation- relativistic momentum - energy relation				
	TRANSFORMATION RELATIONS: transformation of velocity, mass, energy				
	and momentum – four vector – invariance under transformation – Lorentz				
UNIT-II	transformation and velocity addition equations in terms of hyperbolic functions.				
	GENERAL THEORY OF RELATIVITY: Inertial and Gravitational mass –				
	Principle of equivalence – Experimental evidences for General theory of Relativity				
	PHOTONS AND MATTER WAVES: difficulties of classical physics and origin				
	of quantum theory -black body radiation - Planck's law - Einstein's photoelectric				
UNIT-III	equation –Compton effect –pair production – De Broglie waves – phase velocity				
	and group velocity- Davisson and Germer's experiment -uncertainty principle -				
	consequences –illustration of Gamma ray microscope.				
	OPERATORS AND SCHRÖDINGER EQUATION: postulates of quantum				
	mechanics – Wave function and its interpretation – Schrödinger's equation – linear				
UNIT-IV	operators – Eigenvalue – Hermitian operator – properties of Hermitian operator-				
	observable – operators for position, linear Momentum, angular momentum				
	components -commutator algebra -commutator between these operators -				
	expectation values of position and momentum – Ehrenfest theorem.				
	SOLVING SCHRÖDINGER EQUATION FOR SIMPLE PROBLEMS: one-				
	dimensional problems: (i) particle in a box, (ii) barrier penetration problem –				
UNIT-V	quantum mechanical tunneling, (iii) linear harmonic oscillator.				
	higher dimensional problems: (i) Rigid rotator (qualitative),(ii) Hydrogen atom				
	(qualitative).				

	1. Special Theory of Relativity, S. P. Puri, Pearson Education, India, 2013.
	2. Concepts of Modern Physics, A.Beiser, 6 th Ed., McGraw-Hill, 2003.
	3. Modern Physics, R. Murugeshan, KiruthigaSivaprasath, S. Chand & Co., 17 th
	Revised Edition, 2014.
	4. Quantum Mechanics, S.P.Singh, M.K.Bagde, S.Chand& Co., New Delhi, 2000.
TEXT BOOKS	5. Quantum Mechanics in Physics and Chemistry with Applications to
	Biology,RabiMajumdar, PHI, 2011.
	6. Modern Physics, R. Murugesan, S.Chand& Co., New Delhi. (Quantum
	Mechanics, Gupta, Kumar and Sharma. Jai PrakashNath&Co Meerut
	7. Quantum mechanics – Satyaprakash and Swati Saluja. KedarNath Ram Nath&
	Co.
	1. Fundamentals of Modern Physics, Peter J. Nolan, 1 st Edition, 2014, by Physics
	2. Quantum Mechanics, V. Murugan, Pearson Education, India, 2014.
	3. Quantum Mechanics, Alastair I. M. Rae and Jim Napolitano, 6 th Edition, CRC
	Press:Taylor& Francis, 2010.
	4. Quantum Physics: A Fundamental Approach to Modern Physics, John S.
	Townsend, University Science Books, Sausalito, California, 2010.
	5. Quantum Mechanics: Theory and Applications, AjoyGhatak and S.
	Lokanathan, Springer ScienceBusiness Media, Dordrecht, Netherlands, 2004.
REFERENCE	6. Physics of the Atom, Editor(s): M. R. Wehr, J. A. Richards, T. W. Adair, 4 th
BOOKS	Edition, Narosa, 2013.
	7. Quantum Mechanics, V.Devanathan, Narosa Pub. House, Chennai, 2005.
	8. Quantum Mechanics, V.K. Thangappan, New Age International, New Delhi.
	9. A Text Book of Quantum Mechanics, Mathews &Venkatesan, Tata McGraw
	Hill, New Delhi.
	10. Quantum Mechanics, Ghatak&Loganathan, Macmillan Publications.
	11. Introduction to Quantum Mechanics, Pauling & Wilson, McGraw Hill Co.,
	NewYork.
	12. Quantum Mechanics, Gupta, Kumar and Sharma. Jai PrakashNath&Co Meerut
	1. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/qapp.html</u>
	2. <u>https://swayam.gov.in/nd2_arp19_ap83/preview</u>
WEBLINKS	3. <u>https://swayam.gov.in/nd1_noc20_ph05/preview</u>
	4. <u>https://www.khanacademy.org/science/physics/special-relativity/minkowski-</u>
	spacetime/v/introduction-to-special-relativity-and-minkowski-spacetime-
	<u>diagrams</u>

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Understand various postulates of special theory of relativity.						
	CO2	Appreciate the importance of transformation equations and also the general theory of relativity.						
COURSEO UTCOMES	CO3	Realise the wave nature of matter and understand its importance						
	CO4	Derive Schrodinger equation and also realize the use of operators.						
	CO5	Apply Schrödinger equation to simple problems.						

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:mapping} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG (S), MEDIUM (M) and LOW (L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	Μ	S	М	М	S	М	М	М
CO3	М	М	S	М	S	S	М	S	S	S
CO4	Μ	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	М	М	S	М	М	S

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U5PHCP05	Title	Batch	2023 - 2026
Hrs/Week	3	CORE PRACTICALS –V : SPECTROMETER AND ELECTRICITY	Semester Credits	V 2

COURSE	FIFTH SEMESTER - CORE				
COURSETITLE	CORE PRACTICALS				
CREDITS	2/3				
COURSE	Demonstrate various optical phenomena principles, working, apply with various				
OBJECTIVES	materials and interpret the results.				
	SPECTROMETER AND ELECTRICITY				
1. Diffraction grating N	Vormal incidence.				
2. Diffraction grating n					
3. Diffraction at a wire					
4. Specific rotation of s					
5. Bi-prism – Determir					
6. Thickness of a thin f					
7. Brewster's law – pol					
8. Double refraction (
9. Y – by Corlus metho	plane diffraction grating.				
11. Diffraction a straigh					
	city of sound, Adiabatic Young's modulus of the material of the rod.				
	nermal conductivity of a metal rod.				
	ting - Normal incidence - Wave length of Mercury spectral lines.				
-	ating - Minimum deviation - Wave length of Mercury spectral lines.				
16. Spectrometer – (i-c					
17. Spectrometer – (i-i					
18. Spectrometer – Na					
19. Rydberg's constan	•				
20. e/m Thomson metl					
21. h by photocell					
• 1	of photo conductor (LDR)				
22. Spectral response of photo conductor (LDR).23. Potentiometer –Resistance and Specific resistance of the coil.					
24. Potentiometer – E.M.F of a thermocouple.					
	lge - Temperature coefficient of resistance of the coil.				
•	tometer – Determination of Magnetic moment of a bar magnet and B_H using				
circular coil carryi					
encondi con curryn					

27. Vibration magnetometer - Determination of B_H using circular coil carrying current– Tan B position.
28. B.G – Figure of Merit – Charge Sensitivity

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Sci	ence (Physics)
Course Code	23U5PHC07 Title		Batch	2023 - 2026
Hrs/Week	6	CORE – VII :	Semester	VI
		NUCLEAR AND PARTICLE PHYSICS	Credits	5

COURSE	SIXTH SEMESTER – CORE
COURSETITLE	NUCLEAR AND PARTICLE PHYSICS
CREDITS	5
COURSE OBJECTIVES	To understand constituents, properties and models of nucleus. To give reason for radioactivity and study their properties. To learn about the principles of various particle detectors and accelerators.To acquire knowledge on different types of nuclear reactions and their applications. To know the reason for cosmic rays and their effect on the surface of earth and also understand the classification of elementary particles.

UNITS	COURSE DETAILS
UNIT-I	 PROPERTIES OF NUCLEUS: constituents of nucleus – isotopes, isobars, isotones – nuclear size, mass, density, charge, spin, angular momentum, magnetic dipole moment, electric quadrupole moment (qualitative) – binding energy – mass defect – packing fraction – nuclear stability – binding energy per nucleon graph – properties of nuclear force – meson theory of nuclear forces – Yukawa potential. NUCLEAR MODELS: liquid drop model –Weizacker's semi-empirical mass formula – shell model – magic numbers.
UNIT-II	RADIO ACTIVITY: radio activity – laws of radioactivity – radioactive disintegration, decay constant, half-life, mean-life (only final formulae) – unitsof radioactivity– successive disintegration – transient and secular equilibrium– properties of alpha, beta and gamma rays – Geiger-Nuttal law – α -ray spectra –Gammow's theory of α -decay (qualitative) – β -ray spectrum – neutrino theory of β -decay – nuclear isomerism – K- shell capture – internal conversion – non-conservation of parity in weak interactions.
UNIT-III	PARTICLE DETECTORS AND ACCELERATORS DETECTORS: gas detectors –ionization chamber – G-M counter – scintillation counter – photo multiplier tube (PMT) – semiconductor detectors – neutron detector. ACCELERATORS: linear accelerators – cyclotron – synchrotron – betatron– electron synchrotron – protonsynchrotron (bevatron)
UNIT-IV	NUCLEAR REACTIONS: types of nuclear reactions –conservation laws in nuclear reaction – Q-value– threshold energy – nuclear fission – energy released in fission – chain reaction – critical mass – nuclear reactor – nuclearfusion – sources of stellar energy – proton-proton cycle – Carbon-Nitrogen cycle – thermonuclear reactions – controlled thermonuclear reactions.

	COSMIC RAYS AND ELEMENTARY PARTICLES COSMIC RAYS: discovery of cosmic rays – primary and secondary cosmic rays – cascade theory of cosmic ray showers – altitude and latitude effects –discovery of positron – pair production – annihilation of matter – Van-Allen radiation belts – big-					
UNIT-V	bang theory – future of the Universe (elementary ideas only).					
	ELEMENTARY PARTICLES: particles and antiparticles – classification of					
	elementary particles – types of fundamental interactions – quantum numbers of					
	elementary particles – conservation laws and symmetry – quarks and types – quark					
	model (elementary ideas only).					
	1. R Murugeshan & Kiruthiga Sivaprasath, Modern Physics, S. Chand & Co. (2013)					
	2. Brijlal& N. Subramaniyan, Atomic and Nuclear Physics S.Chand& Co					
TEXT BOOKS	3. J.B. Rajam, Modern Physics, S Chand &Co.Publishing Co.					
	4. D.C. Tayal, Nuclear Physics, Himalayan Publishing House					
	5. Atomic and Nuclear Physics, Brijlal& N. Subramaniyan, S.Chand& Co					
	1. Basic ideas and concepts in Nuclear Physics, K.Heyde, 3rd Edn., Institute of					
	Physics Pub.					
	2. Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008)					
	3. Concepts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1998).					
	4. Introduction to the physics of nuclei & particles, R.A. Dunlap. (Thomson Asia, 2004).					
	5. Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press					
REFERENC	6. Introduction to Elementary Particles, D. Griffith, John Wiley & Son					
E BOOKS	7. Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi					
	8. Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).					
	9. Theoretical Nuclear Physics, J.M. Blatt &V.F.Weisskopf (Dover Pub.Inc., 1991)					
	10. Physics and Engineering of Radiation Detection, Syed Naeem Ahmed					
	(AcademicPress, Elsevier, 2007).					
	11. 13. Nuclear Physics, S. N. Ghoshal, S Chand & Co. Edition 2003					
	15. Elements of Nuclear Physics, M. L.Pandya& R. P. S.Yadav, KedarNath& Ram					
	Nath					
	1. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/nuccon.html</u>					
WEBLINKS	2. <u>https://www.kent.edu/physics/nuclear-physics-links</u>					
	3. <u>https://www2.lbl.gov/abc/links.html</u>					

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

COURSEO	CO1	Describe various models that explain about the nuclear structures
UTCOMES	CO2	Give reason for various kinds of radioactivity and also know laws governing them

CO3	Know the principles and applications of various particle detectors and accelerators.				
CO4	CO4 Discuss the concepts used in nuclear reaction.				
CO5 Classify various elementary particles and study t cosmic rays.					

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:mapping} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG (S), MEDIUM (M) and LOW (L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	S	S	М	S	М	М	S	М	М	М
CO3	М	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	М	М	S	М	М	S

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U6PHC08	Title	Batch	2023 - 2026
Hrs/Week	6	CORE – VIII :	Semester	VI
		SOLID STATE PHYSICS	Credits	3

COURSE	SIXTH SEMESTER – CORE
COURSETITLE	SOLID STATE PHYSICS
CREDITS	3
COURSE OBJECTIVES	 To understand constituents, properties and models of nucleus. To give reason for radioactivity and study their properties. To learn about the principles of various particle detectors and accelerators. To acquire knowledge on different types of nuclear reactions and their applications. To know the reason for cosmic rays and their effect on the surface of earth and also understand the classification of elementary particles.

UNITS	COURSE DETAILS					
UNIT-I	 BONDING IN SOLIDS, CRYSTAL STRUCTURE: types of bonding – ionic bonding – bond energy of NaCl molecule –covalent bonding – metallic bonding – hydrogen bonding – Van-der-Waals bonding – crystal lattice – lattice translational vectors – lattice with basis – unit cell – Bravais' lattices – Miller indices – procedure for finding them –packing of BCC and FCC structures – structures of NaCl and diamond crystals –reciprocal lattice – reciprocal lattice vectors – properties – reciproca lattices to SC, BCC and FCC structures – Brillouin zones – X-rays – Bragg's law(simple problems) – experimental methods: Laue method, powder method and rotating crystal method 					
UNIT-II	ELEMENTARY LATTICE DYNAMICS: lattice vibrations and phonons: linear monoatomicand diatomic chains. acoustical and optical phonons – qualitativedescription of the phonon spectrum in solids – Dulong and Petit's Law – Einstein and Debye theories ofspecific heat of solids – T³ law (qualitative only)– properties of metals – classical free electron theory of metals(Drude-Lorentz) – Ohm's law – electrical and thermal conductivities – Weidemann-Franz' law –Sommerfeld's quantum free electron theory (qualitative only) – Einstein's theory of specific heat capacity.					
UNIT-III	MAGNETIC PROPERTIES OF SOLIDS: permeability, susceptibility, relation between them – classification of magnetic materials – properties of dia, para,ferro, ferri and antiferromagnetism – Langevin'stheory of diamagnetism – Langevin'stheory of paramagnetism – Curie-Weiss law – Weiss theory of ferromagnetism(qualitative only) – Heisenberg's quantum theory of ferromagnetism – domains – discussion of B-H curve –hysteresis and energy loss – soft and hard magnets – magnetic alloys.					
UNIT-IV	DIELECTRIC PROPERTIES OF MATERIALS: polarization and electric susceptibility –local electric field of an atom – dielectric constant and polarisability – polarization processes: electronic polarization– calculation of polarisability – ionic,					

	orientational and space charge polarization –internal field – Clausius-Mosotti relation –
	frequency dependence of dielectric constant –dielectric loss – effect of temperature on
	dielectric constant – dielectric breakdown and its types – classical theory of electric
	polarisability –normal and anomalous dispersion – Cauchy and Sellmeir relations –
	Langevin-Debye equation – complex dielectric constant -optical phenomena.
	Application – plasma oscillations – plasma frequency –plasmons,
	FERROELECTRIC & SUPERCONDUCTING PROPERTIES OF MATERIALS:
	ferroelectric effect: Curie-Weiss Law – ferroelectric domains, P-E hysteresis loop –
	elementary band theory: Kronig-Penny model – band gap(no derivation) – conductor,
UNIT-V	semiconductor (P and N type) and insulator -conductivity of semiconductor - mobility
UNII-V	– Hall effect – measurement of conductivity (four probe method) - Hall coefficient.
	Superconductivity: experimental results – critical temperature – critical magnetic field –
	Meissner effect –type-I and type-II superconductors – London's equation and
	penetration depth – isotope effect – idea of BCS theory (no derivation)
	1. Introduction to Solid State Physics, Kittel, Willey Eastern Ltd (2003).
	2. Solid state Physics, Rita John, 1st edition, TataMcGraw Hill publishers (2014).
	3. Solid State Physics, R L Singhal, Kedarnath Ram Nath& Co., Meerut (2003)
	4. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of
	India
TEXT BOOKS	5. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
	6. Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning
	7. Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
	8. Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India
	9. Solid State Physics, M.A. Wahab, 2011, Narosa Publishing House, ND
	1. Puri&Babber – Solid State Physics – S.Chand&Co. New Delhi.
	2. Kittel - Introduction to solid state physics, Wiley and Sons, 7 th edition.
	3. Raghavan - Materials science and Engineering, PHI
REFERENC	4. Azaroff - Introduction to solids, TMH
E BOOKS	5. S. O. Pillai - Solid State Physics, Narosa publication
	6. A.J. Dekker - Solid State Physics, McMillan India Ltd.
	7. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of
	India
	1. https://nptel.ac.in/courses/115105099/
WEBLINKS	2. https://nptel.ac.in/courses/115106061/

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

COURSEOUTCOM	CO1	Classify the bonding &crystal structure also learn about the crystal structure analysis using X ray diffraction.
ES	CO2	Understand the lattice dynamics and thus learn the electrical and thermal properties of materials.
	CO3	Give reason for classifying magnetic material on the basis of their

	behaviour.			
CO4	Comprehend the dielectric behavior of materials.			
CO5	Appreciate the ferroelectric and super conducting properties of materials.			

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:mapping} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG(S), MEDIUM(M) and LOW(L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	Μ	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U6PHC09	Title	Batch	2023 - 2026
Hrs/Week	5	CORE – IX :	Semester	VI
		DIGITAL ELECTRONICS AND MICROPROCESSOR 8085		3

COURSE	SIXTH SEMESTER – DISCIPLINE SPECIFIC ELECTIVE
COURSETITLE	DIGITAL ELECTRONICS AND MICROPROCESSOR 8085
CREDITS	3
COURSE OBJECTIVES	To learn all types of number systems, Boolean algebra and identities, digital circuits for addition and subtraction, flip-flops, registers, counters. To get the knowledge on fundamentals of 8085 architecture, instruction sets and simple programs.

UNITS	COURSE DETAILS
UNIT-I	decimal, binary, octal, hexadecimal numbers systems and their conversions – codes: BCD, gray and excess-3 codes –code conversions –complements (1's, 2's, 9's and 10's) –binary addition, binary subtraction using 1's & 2's complement methods – Boolean laws – De- Morgan's theorem –basic logic gates -universal logic gates (NAND & NOR) –standard representation of logic functions (SOP & POS) – minimization techniques (Karnaugh map: 2, 3, 4 variables).
UNIT-II	adders,half &full adder –subtractors,half &full subtractor –parallel binary adder – magnitude comparator – multiplexers (4:1) &demultiplexers (1:4), encoder (8-line-to-3- line) and decoder (3-line-to-8-line), BCD to seven segment decoder.
UNIT-III	flip-flops: S-R Flip-flop, J-K Flip-flop, T and D type flip-flops, master-slave flip-flop, truth tables, registers:- serial in serial out and parallel in and parallel out – counters asynchronous:-mod-8, mod-10, synchronous - 4-bit ˚ counter – general memory operations, ROM, RAM (static and dynamic), PROM, EPROM, EEPROM, EAROM. IC – logic families: RTL, DTL, TTL logic, CMOS NAND & NOR Gates, CMOS Inverter, Programmable Logic Devices – Programmable Logic Array (PLA), Programmable Array Logic (PAL).
UNIT-IV	8085 Microprocessor: introduction to microprocessor – INTEL 8085 architecture – register organization –pin configuration of 8085, interrupts and its priority – Program Status Word (PSW) –instruction set of 8085 –addressing modes of 8085 –assembly language programming using 8085 –programmes for addition (8-Bit & 16-Bit), subtraction (8-Bit & 16-Bit), multiplication (8- Bit), division (8- Bit) – largest and smallest number in an array – BCD to ASCII and ASCII to BCD.
UNIT-V	I/O Interfaces: serial communication interface (8251-USART) – programmable peripheral interface (8255-PPI) –programmable interval timers (8253) – keyboard and display (8279), DMA controller (8237).

	1. M.Morris Mano, "Digital Design "3rd Edition, PHI, NewDelhi.
	2. Ronald J. Tocci. "Digital Systems-Principles and Applications" 6/e. PHI. New Delhi.
TEXT	1999.(UNITS I to IV)
BOOKS	3. S.Salivahana& S. Arivazhagan-Digital circuits and design
BOOKS	4. Microprocessor Architecture, Programming and Applications with the 8085 - Penram
	International Publishing, Mumbai Ramesh S.Gaonakar
	5. Microcomputer Systems the 8086/8088 family – YU-Cheng Liu and GlenSA
	1. Herbert Taub and Donald Schilling. "Digital Integrated Electronics". McGraw Hill.
	1985.
	2. S.K. Bose. "Digital Systems". 2/e. New Age International.1992.
REFERE NCE	3. D.K. Anvekar and B.S. Sonade. "Electronic Data Converters: Fundamentals
BOOKS	&Applications". TMH.1994.
boomb	4. Malvino and Leach. "Digital Principles and Applications". TMG HillEdition
	5. Microprocessors and Interfacing – Douglas V.Hall
	6. Microprocessor and Digital Systems – Douglas V.Hall
	1. <u>https://youtu.be/-paFaxtTCkI</u>
WEBLINKS	2. <u>https://youtu.be/s1DSZEaCX_g</u>

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U6PHCP06	Title	Batch	2023 - 2026
Hrs/Week	5	CORE PRACTICALS – VI :	Semester	VI
		Electronics	Credits	3

COURSE	SIXTH SEMESTER - CORE
COURSETITLE	CORE PRACTICALS
CREDITS	2/3
COURSE OBJECTIVES	To perform basic experiments on characteristics of electronic devices and then get into the applications such as amplifiers, oscillators, counters, multivibrators. Perform fundamental experiments on microprocessor 8085 and learn to write programs by themselves.
	Electronics
1. Zener diode – vo	oltage regulations
2. Bride rectifier us	sing diodes
3. Clipping and clas	mping circuits using diodes.
4. Characteristics o	f a transistor –(CE mode)
5. Characteristics o	f a transistor –(CB mode).
6. RC coupled CE t	transistor amplifier - single stage.
7. Transistor Emitte	er follower.
8. Colpitt's oscillat	or -transistor.
9. Hartley oscillato	r - transistor.
10. Astable multivib	rator - transistor.
11. Bistablemultivib	rator - transistor.
12. FET - characteris	stics.
13. FET - amplifier ((common drain)
14. UJT -characteris	tics
15. AC circuits with	L,C,R -Series resonance.
16. AC circuits with	L,C,R - Parallel resonance.
17. Operational amp	lifier - inverting amplifier and summing.
18. Operational amp	lifier - non-inverting amplifier and summing.
19. Operational amp	lifier – differential amplifier
20. Operational amp	lifier - differentiator & integrator.
	lifier - D/A converter by binary resistor method.
22. 5V,IC Regulated	
	seven segment display.
	s – NOT,OR,AND, NOR,NAND, XOR, XNOR
	De Morgan's theorem using ICs –NOT, OR,AND
26. NAND as univer	0
27. NOR as universa	-
	f subtractor using basic logic gate ICs
29. Microprocessor	8085 – addition (8 bit only)

- 30. Microprocessor 8085 subtraction (8 bit only)
- 31. Microprocessor 8085 multiplication (8 bit only)
- 32. Microprocessor 8085 division (8 bit only)
- 33. Microprocessor 8085 square (8 bit only)
- 34. Microprocessor 8085 square root (8 bit only)
- 35. Microprocessor 8085 largest/smallest of numbers (8 bit only)
- 36. Microprocessor 8085 -ascending/descending order
- 37. Microprocessor 8085 Fibonacci series

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

DISCIPLINE SPECIFIC CORE ELECTIVES STUDENTS CAN CHOOSE ANY OF THESES SUBJECTS IN SEM V AND VI

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U5PHE01	Title	Batch	2023 - 2026
Hrs/Week	2	SEC :	Semester	V
		COMMUNICATION SYSTEM	Credits	2

	COMMUNICATION SYSTEM
Learning Objective: To get	a thorough knoowledge on transmission and reception of radio waves, the
different types of communication	ation like fibre optic, radar, satellite, cellular
UNITS	COURSE DETAILS
	RADIO TRANSMISSION AND RECEPTION: transmitter – modulation
	types of modulation – amplitude modulation – limitations of amplitude
UNIT-I	modulation – frequency modulation – comparison of FM and AM –
	demodulation- essentials in demodulation - receivers: AM radio receivers -
	types of AM radio receivers – stages of superheterodyne radio receiver,
	advantages – FM receiver – difference between FM and AM receivers.
	FIBER OPTIC COMMUNICATION: introduction – basic principle of
	fiber optics – advantages – construction of optical fiber – classification based
UNIT-II	on the refractive index profile – classification based on the number of modes
	of propagation – losses in optical fibers – attenuation–advantages of
	fiberoptic communication
	RADAR COMMUNICATION: introduction - basic radar system – radar
UNIT-III	range – antenna scanning –pulsed radar system – search radar –tracking radar
	- moving target indicator Doppler effect-MTI principle – CW Doppler radar
	SATELLITE COMMUNICATION: introduction history of satellites –
	satellite communication system – satellite orbits – basic components of
UNIT-IV	satellite communication system – commonly used frequency in satellite –
	communication –multiple access communication – satellite communication in India
	MOBILE COMMUNICATION: introduction – concept of cell –basic
	cellular mobile radio system – cellphone – facsimile – important features of
UNIT-V	fax machine – application of facsimile – VSAT (very small aperture
01111-1	terminals) modem IPTV (internet protocol television) -Wi-Fi-4G (basic
	ideas)
	1. V.K.Metha, Principles of Electronics, S. Chand & CoLtd., 2013
TEXT BOOKS	 Anokh Singh and Chopra A.K., Principles of communication
	Engineering, S.Chand& Co, 2013
	1. J.S. Chitode, Digital Communications, 2020, Unicorn publications
REFERENCE BOOKS	2. Senior John. M, Optical Fiber Communications: Principles and Practice,
	2009, Pearson Education.
ΜΕΤΗΟΟ ΟΕ ΕΥΔ	

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)		
Course Code	23U2PHE02	Title	Batch	2023 - 2026	
Hrs/Week	2	SEC :	Semester	II	
		ENERGY PHYSICS	Credits	2	

	ENERGY PHYSICS
Learning Object	tive: To get the understanding of the conventional and non-conventional energy sources,
their conservation	n and storage systems.
UNITS	COURSE DETAILS
UNIT-I	INTRODUCTION TO ENERGY SOURCES: energy consumption as a measure of prosperity – world energy future – energy sources and their availability – conventional energy sources – non-conventional and renewable energy sources – comparison – merits and demerits.
UNIT-II	SOLAR ENERGY: solar energy Introduction – solar constant – solar radiation at the Earth's surface – solar radiation geometry – Solar radiation measurements – solar radiation data –solar energy storage and storage systems – solar pond – solar cooker – solar water heater – solar greenhouse – types of greenhouses – solar cells.
UNIT-III	WIND ENERGY: introduction – nature of the wind – basic principle of wind energy conversion – wind energy data and energy estimation – basic components of Wind Energy Conversion Systems (WECS) – advantages and disadvantages of WECS – applications – tidal energy
UNIT-IV	BIOMASS ENERGY: introduction – classification – biomass conversion technologies –photosynthesis – fermentation - biogas generation –classification of biogas plants – anaerobic digestion for biogas – wood gasification – advantages & disadvantages.
UNIT-V	ENERGY STORAGE: importance of energy storage- batteries - lead acid battery - nickel-cadmium battery – fuel cells – types of fuel cells – advantages and disadvantages of fuel cells – applications of fuel cells - hydrogen storage.
TEXT BOOKS	 G.D.Rai, Non-Conventional Sources of Energy, Khanna Publishers, 2009, 4thEdn. S P Sukhstme, J K Nayak, Solar Energy, Principles of Thermal Collection and Storage, McGraw Hill, 2008, 3rdEdn. D P Kothari, K P Singal, RakeshRajan, PHI Learning Pvt Ltd, 2011, 2ndEdn.
REFERENCE BOOKS	 John Twidell& Tony Weir, Renewable Energy Resources, Taylor & Francis, 2005, 2ndEdn. S.A. Abbasi and NasemaAbbasi, Renewable Energy sources and their environmental impact, PHI Learning Pvt. Ltd, 2008. M. P. Agarwal, Solar Energy, S. Chand & Co. Ltd., New Delhi,1982 H. C. Jain, Non-Conventional Sources of Energy, Sterling Publishers,1986.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)		
Course Code	23U6PHE03	Title	Batch	2023 - 2026	
Hrs/Week	2	SEC :	Semester	-	
		MATHEMATICAL PHYSICS	Credits	2	

	MATHEMATICAL PHYSICS
	ojective: To understand higher mathematical concepts which are applied to solve problems in
-	imilar situations
UNITS	COURSE DETAILS
UNIT-I	MATRICES: types of matrices – symmetric, Hermitian, unitary and orthogonal matrices– characteristic equation of a matrix – Eigen values and Eigen vectors of a matrix – Cayley- Hamilton theorem – inverse of matrix by Cayley-Hamilton theorem – similarity transformations – diagonalization of 2x2 real symmetric matrices.
UNIT-II	VECTOR CALCULUS: vector differentiation – directional derivatives –definitions & Physical significance of gradient, divergence, curl – Laplace operators– vector identities – line, surface and volume integrals – statement, proof and simple problems for Gauss's divergence theorem, Stoke's theorem, Green's theorem.
UNIT-III	ORTHOGONAL CURVILINEAR COORDINATES: tangent basis vectors – scale factors – unit vectors in cylindrical and spherical coordinate systems –gradient of a scalar – divergence and curl of a vector – Laplacian in these coordinate systems.
UNIT-IV	 FOURIER SERIES: periodic functions – Dirichlet's conditions – general Fourier series – even and odd functions and their Fourier expansions – Fourier cosine and sine – half range series – change of length of interval. Fourier analysis of square wave, saw-tooth wave, half wave/full wave rectifier wave forms. FOURIER TRANSFORMS: Fourier Integral theorem(Statement only)–Fourier, Fourier sine and Fourier cosine transforms,– Fourier transform of single pulse – trigonometric, exponential and Gaussianfunctions – inverse Fourier transform – convolution theorem.
UNIT-V	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS (PDE): PDE for transverse vibrations in elastic strings (one dimensional wave equation) –one dimensional heat flow equation – solutions to these PDE's by method of separation of variables – problems based on boundary conditions and initial conditions.
TEXT BOOKS	 Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India. Mathematical Physics – P. K. Chattopadhyay, New Age International Publishers. Mathematical Physics – B. D. Gupta. Mathematical Physics – H. K. Das, S. Chand & Co, New Delhi.
REFEREN CE BOOKS	 Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill. Engineering Mathematics III- B, M. K. Venkataraman, Applied Mathematics for Scientists and Engineers, Bruce R. Kusse & Erik A. Westwig, 2nd Ed, WILEY-VCH Verlag, 2006. Vector space & Matrices – J. C. Jain, Narosa Publishing House Pvt. Ltd.

tinuous Internal Assessme	nent End Semester Examination	Total	Grade	1
---------------------------	-------------------------------	-------	-------	---

2.5 75 100

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U5PHE04	Title	Batch	2023 - 2026
Hrs/Week	2	SEC :	Semester	-
		ADVANCED MATHEMATICAL PHYSICS	Credits	2

	ADVANCED MATHEMATICAL PHYSICS
	bjective: The fundamentals of matrices and vector calculus learnt in earlier course will enable
	earn advanced topics and theorems. The special functions and applications of partial differential
.	ill be of use in research at a later stage.
UNITS	COURSE DETAILS
UNIT-I	MATRICES: introduction – special types of matrices – transpose – conjugate– conjugate transpose– symmetric & anti symmetric – Hermitian and skew Hermitian – orthogonal and unitary – properties – characteristic equation – roots and characteristic vectors – diagonalization– Cayley–Hamilton theorem –simple problems
UNIT-II	VECTOR CALCULUS: Voperator – divergence – second derivative of vector functions or fields –Laplacian operator – curl of a vector – line integral – line Integral of a vector field around an infinitesimal rectangle – curl of conservative field – surface integral – volume integral (without problem) – Gauss's divergence theorem and proof – Stroke's theorem and proof –simple problems.
UNIT-III	SPECIAL FUNCTIONS: definition –Beta function – Gamma function – evaluation of Beta function – other forms of Beta function – evaluation of Gamma function – other forms of Gamma function – relation between Beta and Gamma functions – simple problems.
UNIT-IV	FROBENIUS METHOD AND SPECIAL FUNCTIONS: singular points of second order linear differential equations and importance –singularities of Bessels and Laguerre equations, Frobenius method and applications to differential equations: Legendre and Hermite differential equations – Legendre and Hermite polynomials – Rodrigues formula –generating function – orthogonality
UNIT-V	PARTIAL DIFFERENTIAL EQUATIONS: solutions to partial differential equations using separation of variables - Laplace's equation in problems of rectangular – cylindrical and spherical symmetry – conducting and dielectric sphere in an external uniform electric field – wave equation and its solution for vibrational modes of a stretched string
TEXT BOOKS	 Mathematical Physics, B.D. Gupta-Vikas Publishing House, 4 th Edition (2006) Mathematical Physics, SatyaPrakash (Sultan Chand)
REFERE NCE BOOKS	 Mathematical MethodsorPhysicists,G.B.Arfken,H.J.Weber,F.E.Harris (2013, 7th Edn., Elsevier) Mathematical Physics–H. K. Dass, Dr. Rama Verma (S. Chand Publishing) Advanced Engineering Mathematics, Erwin Kreyszig (Wiley India) Mathematical Physics and Special Relativity, M. Das, P.K. Jena and B.K. Dash (SrikrishnaPrakashan)

25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U5PHE05	Title	Batch	2023 - 2026
Hrs/Week	2	SEC :	Semester	V
		NUMERICAL METHODS AND C PROGRAMMING	Credits	2

Ν	UMERICAL METHODS AND C PROGRAMMING		
	nderstand the methods in numerical differentiation and integration andto develop		
	of the student. To introduce and explain the basic structure, rules of compiling		
and execution of C program			
UNITS	COURSE DETAILS		
	NUMERICAL SOLUTIONS: determination of zeros of polynomials – roots		
UNIT-I	of linear and nonlinear algebraic and transcendental equations – bisection and		
	Newton-Raphson methods – convergence and divergence of solutions		
	NUMERICAL DIFFERENTIATION, INTEGRATION AND CURVE		
	FITTING: Newton's forward and backward interpolation – Lagrange's		
UNIT-II	interpolation – Newton-Raphson method to find square root and cube roots –		
	principle of least squares – fitting a straight line and exponential curve –		
	trapezoidal rule – Simpson's 1/3 and 1/8 rule		
	ALGORITHM, FLOW CHART AND PROGRAM: development of		
UNIT-III	algorithm – flow chart for solving simple problems– average of set of numbers		
	– greatest, smallest – conversion of Fahrenheit to Celsius and Celsius to		
	Kelvin, miles to kilometer – sorting set of numbers in ascending and		
	descending order – square matrix, addition, subtraction and multiplication of		
	order (2x2) using arrays.		
	INTRODUCTION TO C: importance of C – basic structure of C		
	programming – constants, variables and data types – character set, key words		
UNIT-IV	and identifiers – declaration of variables and data types – operators –		
	expressions: arithmetic, relational, logical, assignment – increment and		
	decrement – conditional – comma operators		
	CONTROL STRUCTURE: decision making with if, if-else, nested if –		
UNIT-V	switch –go to – break – continue –while, do while, for statements – arrays, one		
	dimensional and two dimensional – declaring arrays – storing arrays in		
	memory –initializing arrays – simple programs		
	1. Numerical methods, Singaravelu, Meenakshipublication, 4 th Edn., 1999.		
	2. Numerical methodsP.Kandasamy, K.Thilagavathy, K. Gunavathi, S.Chand,		
	2016		
TEXT BOOKS	3. Programming in C, Balagurusamy, TMG, ND, 2012		
	4. Numerical Analysis, M.K. Venkatraman, NPH, 2013		
	5. Numerical Analysis, B.D.Gupta, Konark Publishers, New Delhi, 2013		
	1. Schaum's outline series, Theory and Problems of programming in C,		
REFERENCE BOOKS	C.Byron& S. Gottfried, Tata McGraw Hill 2003		
REFERENCE DUURS			
	3. Numerical methods and C Programming, Veerarajan, 2015.		

U.S.A, 2nd edition, 1993.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U4PHE06	Title	Batch	2023 - 2026
Hrs/Week	2	SEC :	Semester	Ι
		MATERIALS SCIENCE	Credits	2

MATERIALS SCIENCE Learning Objective: To learn imperfections in crystals, deformation of materials and testing of materials. To get knowledge on behavior of a material, under the action of light and their applications. To know the applications of crystal defects. UNITS **COURSE DETAILS CRYSTAL IMPERFECTIONS:** introduction – point defects: vacancies(problems), interstitials, impurities, electronic defects – equilibrium concentration of point imperfections (problems)-application of point defects -line defects: edge dislocation(problems), screw **UNIT-I** dislocation - surface defects: extrinsic defects - intrinsic defects: grain boundaries, tilt &twist boundaries, twin boundaries, stacking faults - volume defects - effect of imperfections. MATERIAL DEFORMATION: introduction – elastic behavior of materials – atomic model of elastic behavior -modulus as a parameter in design - rubber like elasticity **UNIT-II** inelastic behavior of materials - relaxation process - viscoelastic behavior of materials spring-Dash pot models of viscoelastic behavior of materials. PERMANENT **DEFORMATION** AND **STRENGTHENING METHODS** OF MATERIALS: introduction --plastic deformation: tensile stress-strain curve -- plastic **UNIT-III** deformation by slip – creep: mechanism of creep – creep resistant materials – strengthening methods: strain hardening, grain refinement – solid solution strengthening – precipitation strengthening. **OPTICAL MATERIALS:** introduction – optical absorption in metals, semiconductors and **UNIT-IV** insulators – NLO materials and their applications – display devices and display materials: fluorescence and phosphorescence – light emitting diodes –liquid crystal displays. **MECHANICAL TESTING:** destructive testing: tensile test, compression test, hardness test **UNIT-V** - nondestructive testing (NDT): radiographic methods, ultrasonic methods - thermal methods of NDT: thermography - equipment used for NDT: metallurgical microscope 1. Material science and Engineering, Raghavan V, Prentice Hall of India, Sixth Edition, TEXT 2015 BOOKS 2. Materials science, V. Rajendran, McGraw Hill publications2011 1. William D. Callister, Jr., Material Science & Engineering – An Introduction, 8th Edition, John Wiley & Sons, Inc., 2007 2. W. Bolton, "Engineering materials technology", 3rd Edition, Butterworth & Heinemann, REFEREN 2001. CE 3. Donald R. Askeland, Pradeep P. Phule, "The Science and Engineering of Materials", 5th BOOKS Edition, Thomson Learning, First Indian Reprint, 2007. 4. William F. Smith, "Structure and Properties of Engineering Alloys", Mc-Graw-Hill Inc.,

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme	e Code	B.Sc.,	Programme Title	Bachelor of Sc	ience (Physics)	
Course Coo	de	23U6PHE07	Title	Batch	2023 - 2026	
Hrs/Week		2	SEC :	Semester	Ι	
			LASERS AND FIBEROPTICS	Credits	2	
		LAS	ERS AND FIBEROPTICS			
Learning O	bjective:	The students will le	earn the fundamentals, types	of lasers, laser ins	strumentation and	
their applica	tions also	the interconnect bet	ween optics with lasers.			
UNITS			COURSE DETAILS			
			SER: basic principles: sponta			
	Einstein'scoefficient – pumping mechanism: optical, electrical and laser pumping –					
UNIT-I			nd three level laser system – r	-		
			- concept of Qswitching-The	oryofmodelocking	5	
	cavitydumping.					
	TYPESOFLASER: solidstatelaser: rubylaser, Nd:YAGlaser,Nd:Glasslaser- semiconductor					
UNIT-II	UNIT-II laser: intrinsic semiconductor laser, doped semiconductor laser, injection laser – dye laser – dye laser					
	chemical laser: HCL laser, DF-CO ₂ , COchemicallaser. Gaslaser: neutral atom gas laser (He-					
	Ne laser), CO ₂ laser, Copper vapour laser. APPLICATIONSOFLASER: application of laser in metrology – optical communication –					
UNIT-III	-III material processing: laser instrumentation of material processing, powder feeder, lase					
	heating, laser welding, laser melting – medical application – Laserinstrumentationforsurgeries–laserinastronomy					
				unication princi	nles of	
	FIBEROPTICS: basic components of optical fiber communication – principles of lightpropagation through fiber – total internal reflection – optical fiber – coherent bundle –					
UNIT-IV			mode – phase shift and attenu			
			ngle mode andmulti-mode fib			
		• -	applicationoffiberoptics.	L	C	
			DFABRICATIONOFOPTIC	CALFIBER: fiber	characteristics:	
	mechan	ical and transmissior	h characteristics – absorption l	oss and scattering	loss	
UNIT-V	measure	ements – dispersion -	- connectorsand splicers - fibe	er termination – of	otical time	
	domain	reflectometer(OTDF	R) and its uses – fiber material	- fiber fabrication	n – fiber optic	
	cablesde	esign.				
			on-linear Optics, New Age Int	ernational Publica	tions Third	
TEXT		on, NewDelhi.	.			
BOOKS			eoryandapplicationsbyAvadhu	nulu,		
DOORD		.S.,Chand&Co,Newl		· • • • • • • •	·: 2 010	
			es. 'IntroductiontoOptoElectro	-	-	
REFEREN		-	andLaserEngineering:Princip	les,DevicesandAp	plications"McGr	
CE		HillEducation,2010.	noinlog True and A	22 Nove A ~ T	tional 2004	
BOOKS			nciples, Types and Applications			
	3. Optic, AjoyGhatak, McGraw-HillEducation(India)Pvt,Ltd, 6 th Edn., 2017.					

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U4PHE08	Title	Batch	2023 - 2026
Hrs/Week	2	SEC :	Semester	IV
		DIGITAL PHOTOGRAPHY	Credits	2

	DIGITAL PHOTOGRAPHY
	tive: To understand the principles of photography and image formation and the science
	t. To understand the essential components of conventional and digital cameras and also the
0 1	processing techniques.
UNITS	COURSE DETAILS
	PHOTOGRAPHY AND BASIC PRINCIPLE OF IMAGE FORMATION:
UNIT-I	principle –chemical route and digital route –light, wavelengths, colours – shadows – light intensity and distance – making light form images –pin-hole images – practical
UNII-I	limitations to pin-hole images – lens instead of pin-hole – focal length and image size –
	imaging of closer subjects.
	LENSES – CONTROLLING THE IMAGES: photographic lens – focal length and
	angle of view (problems) – focusing movement – aperture and f-numbers (problems) –
UNIT-II	depth of field- depth of focus - image stabilization - lenses for digital cameras - lens
	and camera care
	CAMERA USING FILMS AND ITS TYPES: camera and its essential components-
UNIT-III	shutter - aperture - light measurement - film housing - camera types: view camera-
	view finder camera - Reflex camera- single lens reflex (SLR) camera
	DIGITAL CAMERAS PRINCIPLE AND TYPES: principle of digital image
	capturing –comparison of digital and analog picture information – megapixel – grain,
	noise and pixel density – optical and digital zooming – image stabilizer – bit depth –
UNIT-IV	white balance – colour modes – file formats (TIFF, RAW & JPEG) – storage cards and
	types – digital cameras: camera phones – compact camera – hybrid camera – digital
	SLR.
	THE DIGITAL IMAGE - POSTPRODUCTION: hardware: computer and its
	peripherals - software: saving digital file - basic editing: navigating the image -
UNIT-V	undo/redo/history - crop - rotate - brightness & contrast - colour balance -
	hue/saturation – dodge/burn – cloning &retouching – removing an element in an image
	- advanced editing: histogram/levels - curves - selection tools: magic wand - printing
	digital images: inkjet printer – laser printer – dye sub printer – lambda/light jet printers.
	1. Michel J.Langford, Anna Fox & Richard Sawdon Smith, Basic photography, 9 th
TEXT BOOKS	Edition, , 2010-NL, Focal press, London
	2. Henry Carroll, Read this if you want to take great photographs of people, Laurence
	King Publishing

	1. Mark Galer, Digital Photography in Available Light essential skills, 2006, Focal
REFERENCE	press, London
BOOKS	2. Paul Harcourt Davies, The Photographer's practical handbook, 2005, UK PRESS

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U6PHE09	Title	Batch	2023 - 2026
Hrs/Week	2	SEC :	Semester	VI
		NANOSCIENCE AND NANO TECHNOLOGY	Credits	2

	NANOSCIENCE AND NANO TECHNOLOGY			
Learning Ob	jective: This course aims to provide an overall understanding of Nanoscience and			
Nanotechnology and introduces different types of nanomaterials, their properties, fabrication methods,				
characterizatio	n techniques and a range of applications.			
UNITS	COURSE DETAILS			
	NANOSCIENCE AND NANOTECHNOLOGY: nanoscale- nature and nanostructures			
UNIT-I	– nanostructures: 0D, 1D,2D– surface to volume ratio– size effect – excitons – quantum			
	confinement- metal based nanoparticles (metal and metal oxide) - nanocomposites (non-			
	polymer based) – carbon nanostructures – fullerene –SWCNT and MWCNT			
	PROPERTIES OF NANOMATERIALS: introduction -mechanical behavior -elastic			
	properties - hardness and strength - ductility and toughness -superplastic behavior -			
UNIT-II	optical properties – surface plasmon resonance – electrical properties – dielectric materials			
	and properties – magnetic properties – super paramagnetism – electrochemical properties –			
	properties of CNTs.			
	FABRICATION METHODS AND VACUUM TECHNIQUES:top-down and bottom-			
	up approaches – electrochemical method – chemical & physical vapour depositions (CVD			
UNIT-III	& PVD) – plasma arc discharge – sputtering – thermal evaporation – pulsed laser			
	deposition – ball milling – lithography: photolithography – e-beam lithography – sol-gel			
	methods – synthesis of CNT.			
	CHARACTERIZATION TECHNIQUES: scanning probe microscopy – scanning			
UNIT-IV	tunneling microscopy – atomic force microscopy – scanning electron microscopy –			
0111-1 V	transmission electron microscopy -powder XRD method: determination of structure and			
	grain size analysis – UV-visible and photoluminescence spectroscopy.			
	APPLICATIONS OF NANOMATERIALS: medicine: drug delivery – photodynamic			
UNIT-V	therapy – molecular motors –energy: fuel cells –rechargeable batteries – supercapacitors–			
	photovoltaics. sensors: nanosensors based on optical and physical properties -			

	electrochemical sensors - nanobiosensors. nanoelectronics: CNTFET - display screens -			
	GMR read/write heads – nanorobots –applications of CNTs			
	1. K.K.Chattopadhyay and A.N.Banerjee, (2012), Introduction to Nanoscience and			
TEXT	Nanotechnology, PHI Learning Pvt. Ltd.,			
BOOKS	2. M.A. Shah, Tokeer Ahmad (2010), Principles of Nanoscience and Nanotechnology,			
DOORS	Narosa Publishing House Pvt Ltd.			
	3. Mick Wilson, et al (2005) Nanotechnology, Overseas Press.			
	1. Richard Booker and Earl Boysen, (2005) <u>Nanotechnology</u> , Wiley Publishing Inc. USA			
REFERENC	2. J.H.Fendler (2007) Nano particles and nano structured films; Preparation,			
	Characterization and Applications, John Wiley & Sons			
E BOOKS	3. B.S.Murty, et al (2012) Textbook of Nanoscience and Nanotechnology, Universities			
	Press.			

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U3PHE10	Title	Batch	2023 - 2026
Hrs/Week	2	SEC :	Semester	III
		MEDICAL INSTRUMENTATION	Credits	2

	MEDICAL INSTRUMENTATION				
Learning O	bjective: This course aims to provide background of the Physics principles inmedical				
instrumentatio	on technologies through theoretical & practical learning.				
UNITS	COURSE DETAILS				
LINIT I	BIOMETRICS: introduction to man-instrument system and its components –problems encountered in measuring living systems – transducers– force, motion, pressure transducers.				
UNII-I	UNIT-I AUDIOMETRY:mechanism of hearing – air and bone conduction – threshold of –audiometer – masking in audiometry – pure tone and speech audiometer – response audiometry – hearing aids				
UNIT-II	 BIOELECTRIC POTENTIALS AND ELECTRODES: biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials –biopotential electrodes – skin surface, needle electrodes. BIOMEDICAL RECORDERS: electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle – electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter. 				
UNIT-III	DIAGNOSTIC RADIOLOGY: radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY: linear tomography – computed tomography – helical and multi slice –image quality– radiation dose.				

	RADIOISOTOPESANDNUCLEARMEDICINE: radioisotopes–radiopharmaceuticals–technetiumgenerator–gammacamera–positronemissiontomography–disposal of radioactivewaste.–––		
UNIT-IV	ULTRASOUND IMAGING: ultrasound transducer – ultrasound imaging– Doppler ultrasound – ultrasound image quality & bio-effects. MAGNETIC RESONANCE IMAGING:proton & external magnetic field – precession – radiofrequency and resonance – MRI signal – relaxation time – MRI instrumentation – imaging sequences – biosafety		
UNIT-V	PROJECT ASSIGNMENT: clinical practice of <i>one</i> of the following:electro cardiogram, electro encephalogram, electro myogram, electro oculogram, computed tomography, positron emission tomography, ultrasound		
TEXT BOOKS	 Leslie Cromwell, Fred Weibell, Erich Pfieffer(2002) Biomedical Instrumentation & Measurements Prentice Hall of India, New Delhi. R. S. Khandpur (2003)Handbook of Biomedical Instrumentation 2ndEdn. Tata McGraw Hill, New Delhi. KuppusamyThayalan (2017), Basic Radiological Physics 2ndEdn. Jaypee Brothers Medical Publishers (P) Ltd, New Delhi. 		
REFERENC E BOOKS	 John Webster (2004) Bioinstrumentation John Wiley and Sons, Singapore. John Enderle, Susan Blanchard, Joseph Bronzino (2005) Introduction to Biomedical Engineering, 2nd ed. Elsevier, San Deigo William Hendee, Geoffrey Ibbott, Eric Hendee (2005) Radiation therapy Physics 3rd ed. Wiley-Liss, New Jersey 		

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

NON MAJOR ELECTIVES (NME)

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U1PHE01	Title	Batch	2023 - 2026
Hrs/Week	2	NME :	Semester	Ι
		PHYSICS FOR EVERYDAY LIFE	Credits	2

	PHYSICS FOR EVERYDAY LIFE
Learning Objective: To kn	now where all physics principles have been put to use in daily life and appreciate
the concepts with a better u contributions to Physics	nderstanding also to know about Indian scientists who have made significant
UNITS	COURSE DETAILS
UNIT-I	MECHANICAL OBJECTS: spring scales – bouncing balls –roller coasters
UNIT-I	– bicycles –rockets and space travel.
	OPTICAL INSTRUMENTS AND LASER: vision corrective lenses –
UNIT-II	polaroid glasses – UV protective glass – polaroid camera – colour
	photography – holography and laser.
	PHYSICS OF HOME APPLIANCES: bulb – fan – hair drier – television –
UNIT-III	air conditioners – microwave ovens – vacuum cleaners
	SOLAR ENERGY: Solar constant – General applications of solar energy –
UNIT-IV	Solar water heaters – Solar Photo – voltaic cells – General applications of
	solar cells.
	INDIAN PHYSICIST AND THEIR CONTRIBUTIONS: C.V.Raman,
UNIT-V	HomiJehangirBhabha, Vikram Sarabhai, Subrahmanyan Chandrasekhar,
0111-1	Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam and their contribution to
	science and technology.
	1. The Physics in our Daily Lives, Umme Ammara, Gugucool Publishing,
TEXT BOOKS	Hyderabad, 2019.
	2. For the love of physics, Walter Lawin, Free Press, New York, 2011.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U2PHE02	Title	Batch	2023 - 2026
Hrs/Week	2	NME :	Semester	Ι
		ASTROPHYSICS	Credits	2

	ASTROPHYSICS
	tive: This course intends to introduce principles of astrophysics describing the science of
	evolution of stars and interpretation of various heavenly phenomena and provide an
-	the physical nature of celestialbodies along with the instrumentation and techniques used
in astronomical re	
UNITS	COURSE DETAILS
UNIT-I	TELESCOPES: Optical telescopes – magnifying power, brightness, resolving power and f/a ratio – types of reflecting and refracting telescopes – detectors and image processing – radio telescopes – Hubble space telescope.
UNIT-II	SOLAR SYSTEM: Bode's law of planetary distances – meteors, meteorites, comets, asteroids – Kuiper belt – Oort cloud – detection of gravitational waves – recent advances in astrophysics.
UNIT-III	ECLIPSES: types of eclipses – solar eclipse – total and partial solar eclipse – lunar eclipse – total and partial lunar eclipse – transits. THE SUN: physical and orbital data – solar atmosphere – photosphere – chromosphere –
	solar corona – prominences – sunspots – 11 year solar cycle – solar flares.
UNIT-IV	 STELLAR EVOLUTION: H-R diagram – birth & death of low mass, intermediate mass and massive stars – Chandrasekar limit – white dwarfs – neutron stars – pulsars – black holes – supernovae. GALAXIES: classification of galaxies – galaxy clusters –interactions of galaxies, dark matter and super clusters – evolving universe.
	ACTIVITIES IN ASTROPHYSICS:
UNIT-V	 (i) Basic construction of telescope (ii) Develop models to demonstrate eclipses/planetary motion (iii) Night sky observation (iv) Conduct case study pertaining to any topic in this paper (v) Visit to any one of the National Observatories Any three activities to be done compulsorily.
TEXT BOOKS	 BaidyanathBasu, (2001). <u>An introduction to Astrophysics</u>, Second printing, Prentice – Hall of India (P) Ltd, New Delhi K.S.Krishnaswamy, (2002), <u>Astrophysics – a modern perspective</u>, New Age International (P) Ltd, New Delhi. Shylaja, B.S. &Madhusudan, H.R.,(1999), <u>Eclipse: A Celestial Shadow Play</u>, Orient BlackSwan,

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U4PHE03	Title	Batch	2023 - 2026
Hrs/Week	2	NME :	Semester	Ι
		PHYSICS OF MEDICAL INSTRUMENTS	Credits	2

	PHYSICS OF MEDICAL INSTRUMENTS
	e: The students will be exposed to instruments like ECG,EEG,EMG, medical imaging, s, operation theater and its safety which will kindle interest to specialize in instrument
servicing.	
UNITS	COURSE DETAILS
UNIT-I	BIO-POTENTIALS AND ELECTRODES: transport of ions through cell membrane- resting and action potential - Characteristics of resting potential – bio-electric potential – design of medical instruments – components of bio- medical instrumentation – electrodes – electrode potential – metal microelectrode – depth and needle electrodes – types of surface electrode – the pH electrode.
UNIT-II	Bio-potential based Instrumentation: Electrocardiography (ECG) – origin of cardiac action potential - ECG lead configuration –block diagram of ECG recording set up (qualitative) – Electroencephalography (EEG) – origin of EEG – action and evoked potentials - brain waves – block diagram of modern EEG set up – electromyography (EMG) – block diagram of EMG recording setup.
UNIT-III	OPERATION THEATRE AND SAFETY: diathermy – block diagram of the electrosurgical diathermy– shortwave, microwave, ultrasonic diathermy– ventilators – servo controlled systems – RADIATION SAFETY: units of radiation - pocket dosimeter – pocket type radiation alarm – thermo-luminescence dosimeter.
UNIT-IV	MEDICAL IMAGING: nuclear imaging technique –computer tomography (CT) – principle – mathematical basis of image construction –block diagram of CT scanner – ultrasonic imaging systems – construction of transducer – display modes – MRI principle and instrumentation.
UNIT-V	 DIAGNOSTICS AND SPECIALITIES:X-rays in radiography – fluoroscopy – comparison– image intensifiers – angiography – applications of X-ray examination (<i>problems</i>). LASER IN MEDICINE:laser interactions with biomolecules – advantages of laser surgery – endoscopy – types of endoscopes with their operation (qualitative).

TEXT BOOKS	 Biomedical Instrumentation and measurement, Leslie Cromwell, PHI, 2015 Medical Instrumentation, M. Arumugam, Anuradha agencies, 1992 Medical Electronics, M.J.Kumar Doss, Prathibha Publishers, 1987 Medical Physics, John R. Cameron and James G. Skofronick, Thrift books, Atlanta, 1985 Electronic Instruments and Instrumentation Technology, M. M.M.Anand, PHI, 2015
------------	---

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U3PHE04	Title	Batch	2023 - 2026
Hrs/Week	2	NME :	Semester	Ι
		HOME ELECTRICAL INSTALLATION	Credits	2

	HOME ELECTRICAL INSTALLATION
Learning Objectiv	e: The students will get knowledge on electrical instruments, installations and domestic
wiring techniques w	vith safety precautions and servicing.
UNITS	COURSE DETAILS
UNIT-I	SIMPLE ELECTRICAL CIRCUITS: charge, current, potential difference, resistance – simple electrical circuits – DC ammeter, voltmeter, ohmmeter – Ohm's law – difference between DC and AC – advantages of AC over DC – electromagnetic induction - transformers – inductors/chokes – capacitors/condensers – impedance – AC ammeter, voltmeter –symbols and nomenclature
UNIT-II	TRANSMISSION OF ELECTRICITY: production and transmission of electricity – concept of power grid – Series and parallel connections – technicalities of junctions and loops in circuits –transmission losses (qualitative) – roles of step-up and step-down transformers – quality of connecting wires – characteristicsof single and multicore wires
UNIT-III	ELECTRICAL WIRING: different types of switches – installation of two way switch – role of sockets, plugs, sockets - installation of meters – basic switch board – electrical bell – indicator – fixing of tube lights and fans – heavy equipment like AC, fridge, washing machine, oven, geyser, jet pumps – provisions for inverter – gauge specifications of wires for various needs
UNIT-IV	POWER RATING AND POWER DELIVERED: conversion of electrical energy in to different forms – work done by electrical energy – power rating of

	electrical appliances – energy consumption – electrical energy unit in kWh – calculation of EB bill – Joule's heating – useful energy and energy loss – single and three phase connections – Measures to save electrical energy – energy audit	
UNIT-V	SAFETY MEASURES: insulation for wires – colour specification for mains, return and earth – Understanding of fuse and circuit breakers – types of fuse: kit-kat, HRC, cartridge, MCB, ELCB – purpose of earth line – lighting arrestors – short circuiting and over loading – electrical safety – tips to avoid electrical shock – first aid for electrical shock – fire safety for electric current	
TEXT BOOKS	 Wiring a House: 5th Edition by Rex Cauldwell, (2014). Black & Decker Advanced Home Wiring, 5th Edition: Backup Power - Panel Upgrades - AFCI Protection - "Smart" Thermostats, by Editors of Cool Springs Press, (2018). Complete Beginners Guide to Rough in Electrical Wiring: by Kevin Ryan (2022). 	

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code	B.Sc.,	Programme Title	Bachelor of Sci	ence (Physics)
Course Code	23U4PHE05	Title	Batch	2023 - 2026
Hrs/Week	2	NME :	Semester	Ι
		PHYSICS OF MUSIC	Credits	2

	PHYSICS OF MUSIC	
Learning Objective: To	apprise and train students on the role of Physics in music and get the knowledge	
on the musical notes and i	nstruments.	
UNITS	COURSE DETAILS	
UNIT-I	SCIENTIFIC STUDY OF MUSIC: vibrations of atoms of matter– vibrations coupling to air – propagation of sound waves in air, other media, fluids & solids – velocity, frequency, wavelength, time period, intensity: definition and unit fs – classification of sound on frequency and velocity– human & animal sound perception– mechanism of ear and hearing – psychoacoustics	
UNIT-II	SIMPLE VIBRATING SYSTEMS: simple harmonic motion – tuning fork– amplitude, phase, energy,energy loss/damping/ dissipation – power – travelling waves and standing waves– laws of vibration in stretched strings– one-dimensional medium – open and closed organ pipes – over tones, harmonics – quality of sound: pitch, timber, loudness – octaves, musical notes	

	MUSICAL TONE: pure/simple tones – sine/cosine waves– well-defined
	frequencies, wavelengths, amplitudes & phases– partial tones – assembly of
	pure tones– mix of different frequencies & amplitudes– complex tone –
UNIT-III	superposition of simple tones – complex waveform– periodic complex
	waveform – formants – resonances– sound envelope
	1
	PRODUCTION OF MUSICAL SOUNDS: human voice, mechanism of
	vocal sound production – larynx (sound box) – stringed Instruments:plucked
	&bowed, guitar, mandolin, violin, piano, etc. –
UNIT-IV	wind instruments: whistles, flute, saxophone, pipe organ, bag pipes,etc -
	percussion instruments: plates, membranes, drums, cymbals, xylophone etc
	<i>electronic instruments</i> : keyboards, electric guitars, rhythm pads, etc. – analog
	and digital sound synthesizers,-MIDI instrument- computer generated music
	RECORDING OF MUSIC & SOUND: Edison phonograph – cylinder &
	disk records – magnetic wire and tape recorders – digital recording (e.g. to
	CD, DVD, etc.)- analog transducers, condenser, dynamic microphones,
UNIT-V	loudspeaker – complex sound fields – near & far fields of acoustic– spectral
	analysis techniques – continuous & discrete Fourier transforms, digital signal
	processing – digital filtering – specifications of recording studios
	1. Physics and Music: The Science of Musical Sound by Harvey White (2014)
	2. Good Vibrations – The Physics of Music by Barry Parker, (2009)
TEXT BOOKS	3. The History of Musical Instruments by Curt Sachs, (2006)
IEAI BOOKS	
	Excursions by Kinko Tsuji and Stefan C. Müller(2021)

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

ALLIED PHYSICS

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)	
Course Code	23U1PHA01	Title	Batch	2023 - 2026
Hrs/Week	4	ALLIED PHYSICS – I	Semester	Ι
			Credits	3

COURSE	ALLIED PAPER
COURSETITLE	ALLIED PHYSICS – I
CREDITS	3
COURSE	To impart basicprinciples f Physics that which would be helpful for
OBJECTIVES	students who have taken programmes other than Physics.

UNITS	COURSE DETAILS
UNIT-I	WAVES, OSCILLATIONS AND ULTRASONICS: simple harmonic motion (SHM) – composition of two SHMs at right angles (periods in the ratio 1:1) – Lissajous figures – uses – laws of transverse vibrations of strings – determination of AC frequency using sonometer (steel and brass wires) – ultrasound – production – piezoelectric method – application of ultrasonics: medical field – lithotripsy, ultrasonography – ultrasonoimaging- ultrasonics in dentistry – physiotheraphy, opthalmology – advantages of noninvasive surgery – ultrasonics in green chemistry.
UNIT-II	PROPERTIES OF MATTER: <i>Elasticity</i> : elastic constants – bending of beam – theory of non- uniform bending – determination of Young's modulus by non-uniform bending – energy stored in a stretched wire – torsion of a wire – determination of rigidity modulus by torsional pendulum <i>Viscosity</i> : streamline and turbulent motion – critical velocity – coefficient of viscosity – Poiseuille's formula – comparison of viscosities – burette method, <i>Surface tension</i> : definition – molecular theory – droplets formation–shape, size and lifetime – COVID transmission through droplets, saliva – drop weight method – interfacial surface tension.
UNIT-III	HEAT AND THERMODYNAMICS: Joule-Kelvin effect – Joule-Thomson porous plug experiment – theory – temperature of inversion – liquefaction of Oxygen– Linde's process of liquefaction of air– liquid Oxygen for medical purpose– importance of cryocoolers – thermodynamic system – thermodynamic equilibrium – laws of thermodynamics – heat engine – Carnot's cycle – efficiency – entropy – change of entropy in reversible and irreversible process.
UNIT-IV	ELECTRICITY AND MAGNETISM: potentiometer – principle – measurement of thermo emf using potentiometer –magnetic field due to a current carrying conductor – Biot-Savart's law – field along the axis of the coil carrying current – peak, average and RMS values of ac current and voltage – power factor and current values in an AC circuit – types of switches in household and factories–Smart wifi switches- fuses and circuit breakers in houses

	DIGITAL ELECTRONICS AND DIGITAL INDIA: logic gates, OR, AND, NOT, NAND,			
	NOR, EXOR logic gates – universal building blocks – Boolean algebra – De Morgan's			
UNIT-V	theorem – verification – overview of Government initiatives: software technological parks			
0111-1	under MeitY, NIELIT- semiconductor laboratories under Dept. of Space – an introduction to			
	Digital India			
	1. R.Murugesan (2001), AlliedPhysics,S. Chand&Co,NewDelhi.			
	 2. BrijlalandN.Subramanyam (1994), WavesandOscillations, VikasPublishing 			
	2. Brijialandi, Subramanyani (1994), wavesandOsemations, vikasPublishing House, NewDelhi.			
TEXT				
BOOKS	 BrijlalandN.Subramaniam (1994), PropertiesofMatter,S.Chand&Co.,NewDelhi. J.B.Rajam and C.L.Arora (1976). Heat and Thermodynamics (8th edition), 			
DOORS	4. J.B.Rajani and C.L.Afora (1976). Heat and Thermodynamics (8 edition), S.Chand&Co.,New Delhi.			
	5. R.Murugesan(2005), OpticsandSpectroscopy,S.Chand&Co,NewDelhi.			
	 A.Subramaniyam, AppliedElectronics2ndEdn.,NationalPublishingCo.,Chennai. 			
	1. ResnickHallidayandWalker(2018).FundamentalsofPhysics(11 th edition),JohnWilleyand			
	Sons, Asia Pvt.Ltd., Singapore.			
	2. V.R.KhannaandR.S.Bedi (1998), TextbookofSound1 st Edn. KedharnaathPublish&Co,			
REFERE	2. V.K.Khamaanuk.S.Beur (1998), TextbookorSoundi Eun. Keunarnaann ubhsheeco, Meerut.			
NCEBO	3. N.S.KhareandS.S.Srivastava (1983),			
OKS	ElectricityandMagnetism10 th Edn.,AtmaRam&Sons, New Delhi.			
	4. D.R.KhannaandH.R. Gulati(1979). Optics,S. Chand &Co.Ltd.,New Delhi.			
	 D.K.Khahhaahahi K. Gulah (1979). Optics, S. Chahd & Co.Etd., New Denn. V.K.Metha (2004). Principles of electronics 6th Edn. S. Chandand company. 			
	1. https://youtu.be/M_5KYncYNyc			
	2. https://youtu.be/ljJLJgIvaHY			
	3. <u>https://youtu.be/7mGqd9HQ_AU</u>			
	4. <u>https://youtu.be/h5jOAw57OXM</u>			
WEBLINK	5. <u>https://learningtechnologyofficial.com/category/fluid-mechanics-lab/</u>			
S	6. <u>http://hyperphysics.phy-</u>			
2	astr.gsu.edu/hbase/permot2.htmlhttps://www.youtube.com/watch?v=gT8Nth9NWPMht			
	tps://www.youtube.com/watch?v=9mXOMzUruMQ&t=1shttps://www.youtube.com/w			
	atch?v=m4u-SuaSu1s&t=3shttps://www.biolinscientific.com/blog/what-are-surfactants-			
	and-how-do-they-work			

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1 Explain types of motion and extend their knowledge in the stuve various dynamic motions analyze and demonstrate mathematically. Relate with practical applications in medical field.			
COURSE OUT	Explaintheirknowledgeofunderstandingaboutmaterialsandtheir behaviorsandapplyittovarioussituationsinlaboratoryandreal life. Connect droplet theory with Corona transmission.			
COMES	Comprehend basic concept of thermodynamics concept of entropyand associated theorems able to interpret the process of flowtemperaturephysicsinthebackgroundofgrowthof this technology.			
	CO4	Articulate the knowledge about electric current resistance, capacitance in termsofpotentialelectricfieldandelectriccorrelatetheconnectionbetweenelectricfieldandmagneticfieldandanalyzethemmat		

	hematically	verify	circuitsa	andappl	ytheconcepts	toconstru	uctcircuits	andstud	ythem.
	Interpret basiclogics				solutions astouniversa	0	AND, plocks.	OR,	NOT
CO5	Inferoperat	tionsus	ingBool	leanalge	ebraandacqui Govt. program	reelement	taryideaso		

MAPPING WITH PROGRAM OUT COMES:

Mapcourseoutcomes(CO)foreachcoursewithprogramoutcomes(PO)inthe3pointscaleofSTRONG(S),MEDIUM(M)andLOW(L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	М	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

Programme Code	B.Sc.,	Programme Title	Bachelor of Sci	ence (Physics)
Course Code	23U1PHAP01	Title	Batch	2023 - 2026
Hrs/Week	3	ALLIED PRACTICALS – I	Semester	Ι
			Credits	2

COURSE	ODD SEMESTER - CORE
COURSETITLE	ALLIED PRACTICALS – I
CREDITS	3/2
COURSE OBJECTIVES	Apply various physics concepts to understand Properties of Matter and waves, set up experimentation to verify theories, quantify and analyse, able to do error analysis and correlate results

ANY Seven only

- 1. Young's modulus by non-uniform bending using pin and microscope
- 2. Young's modulus by non-uniform bending using optic lever, scale and telescope
- 3. Rigidity modulus by static torsion method.
- 4. Rigidity modulus by torsional oscillations without mass
- 6. Surface tension and interfacial Surface tension drop weight method
- 7. Comparison of viscosities of two liquids burette method
- 8. Specific heat capacity of a liquid half time correction
- 9. Verification of laws of transverse vibrations using sonometer
- 10. Calibration of low range voltmeter using potentiometer
- 11. Determination of thermo emf using potentiometer
- 12. Verification of truth tables of basic logic gates using ICs
- 13. Verification of De Morgan's theorems using logic gate ICs.
- 14. Use of NAND as universal building block.

Note : Use of digital balance permitted

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Programme Code B.Sc.,		Programme Title	Bachelor of Science (Physics	
Course Code	23U2PHA02	Title	Batch	2023 - 2026
Hrs/Week	4	ALLIED PHYSICS –II	Semester	Ι
			Credits	2

COURSE	ALLIED PAPER
COURSETITLE	ALLIED PHYSICS –II
CREDITS	3
COURSE OBJECTIVES	To understand the basic concepts of optics, modern Physics, concepts of relativity and quantumphysics, semiconductorphysics, and electronics.

UNITS	COURSE DETAILS
UNIT-I	OPTICS: interference – interference in thin films –colors of thin films – air wedge – determination of diameter of a thin wire by air wedge – diffraction – diffraction of light vs sound – normal incidence – experimental determination of wavelength using diffraction grating (no theory) – polarization – polarization by double reflection – Brewster's law – optical activity – application in sugar industries
UNIT-II	ATOMIC PHYSICS: atom models – Bohr atom model – mass number – atomic number – nucleons – vector atom model – various quantum numbers – Pauli's exclusion principle – electronic configuration – periodic classification of elements – Bohr magneton – Stark effect –Zeeman effect (elementary ideas only) – photo electric effect – Einstein's photoelectric equation – applications of photoelectric effect: solar cells, solar panels, optoelectric devices
UNIT-III	NUCLEAR PHYSICS: nuclear models – liquid drop model – magic numbers – shell model – nuclear energy – mass defect – binding energy – radioactivity – uses – half life – mean life - radio isotopes and uses –controlled and uncontrolled chain reaction – nuclear fission – energy released in fission – chain reaction – critical reaction – critical size- atom bomb – nuclear reactor – breeder reactor – importance of commissioning PFBR in our country – heavy water disposal, safety of reactors: seismic and floods – introduction to DAE, IAEA – nuclear fusion – thermonuclear reactions – differences between fission and fusion.
UNIT-IV	INTRODUCTION TO RELATIVITY AND GRAVITATIONAL WAVES :frame of reference – postulates of special theory of relativity – Galilean transformation equations – Lorentz transformation equations – derivation – length contraction – time dilation – twin paradox – mass-energy equivalence –introduction on gravitational waves, LIGO, ICTS opportunities at International Centre for Theoretical Sciences
UNIT-V	SEMICONDUCTOR PHYSICS: p-n junction diode – forward and reverse biasing – characteristic of diode – zener diode – characteristic of zener diode – voltage regulator – full wave bridge rectifier – construction and working – advantages (no mathematical treatment) – USB cell phone charger –introduction to e-vehicles and EV charging stations

	1. R.Murugesan (2005), AlliedPhysics, S.Chand&Co, NewDelhi.
	2. K.ThangarajandD.Jayaraman(2004), AlliedPhysics, PopularBookDepot, Chennai.
	3. BrijlalandN.Subramanyam(2002), TextbookofOptics, S.Chand&Co, NewDelhi.
TEXT BOOKS	4. R.Murugesan (2005), ModernPhysics,S.Chand&Co,NewDelhi.
	5. A.SubramaniyamAppliedElectronics, 2 nd Edn.,NationalPublishingCo.,Chennai.
	1. ResnickHallidayandWalker (2018), FundamentalsofPhysics, 11 th Edn.,
	JohnWilleyandSons, Asia Pvt.Ltd.,Singapore.
	2. D.R.KhannaandH.R. Gulati (1979).Optics, S.Chand&Co.Ltd.,New Delhi.
	3. A.Beiser (1997),
REFERENC	
EBOOKS	ConceptsofModernPhysics,TataMcGrawHillPublication,NewDelhi.
2200110	4. Thomas L. Floyd (2017), Digital Fundamentals, 11 th Edn., Universal Book
	Stall, NewDelhi.
	5. V.K.Metha(2004), Principlesofelectronics, 6 th Edn. ,S.Chandand Company,
	New Delhi.
	1. <u>https://www.berkshire.com/learning-center/delta-p-</u>
	facemask/https://www.youtube.com/watch?v=QrhxU47gtj4https://www.youtube.c
	om/watch?time_continue=318&v=D38BjgUdL5U&feature=emb_logo
WEBLINKS	2. <u>https://www.youtube.com/watch?v=JrRrp5F-Qu4</u>
	3. https://www.validyne.com/blog/leak-test-using-pressure-transducers/
	4. https://www.atoptics.co.uk/atoptics/blsky.htm -
	5. <u>https://www.metoffice.gov.uk/weather/learn-about/weather/optical-effects</u>
	J. <u>https://www.hietoffice.gov.uk/weather/learn-about/weather/optical-effects</u>

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

COURSE OUTCOM ES	CO1	Explaintheconceptsof interferencediffractionusingprinciplesof superpositionofwaves and rephrase the concept of polarization based on wave patterns
	CO2	Outline the basic foundation of different atom models and various experiments establishing quantum concepts. Relate the importance of interpreting improving theoretical models based on observation. Appreciate interdis ciplinary nature of science and in solar energy related applications.
	CO3	Summarizethepropertiesofnuclei, nuclearforcesstructureofatomicnucleusandnuclear models. Solveproblems on delayratehalf-lifeand mean-life.Interpret nuclear processes likefission and fusion. Understand the importance of nuclear energy, safety measures carried and get our Govt.agencies like DAE guiding the country in the nuclear field.
	CO4	Todescribethebasicconceptsofrelativitylikeequivalenceprinciple, inertialframes and Lorentz transformation. Extend their knowledge on concepts ofrelativityandviceversa. Relate this with current research in this field and get an overview of research projects of National and International importance, like

	LIGO, ICTS, and opportunities available.
CO5	Summarize the working of semiconductor devices like junction diode, Zenerdiode, transistors and practical devices we daily use like USB chargers and EV charging stations.

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:mapping} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG (S), MEDIUM (M) and LOW (L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	М	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

Programme Code	B.Sc.,	Programme Title	Bachelor of Science (Physics)		
Course Code	23U1PHAP02	Title	Batch	2023 - 2026	
Hrs/Week	2	ALLIED PRACTICALS –	Semester	Ι	
		II	Credits	2	

ALLIED PRACTICALS – II 3/2
3/2
Apply various Physics concepts to understand concepts of Light, electricity and magnetism and waves, set up experimentation to verify theories, quantify and analyse, able to do error analysis and correlate results

Any Eight

- 1. Radius of curvature of lens by forming Newton's rings
- 2. Thickness of a wire using air wedge
- 3. Wavelength of mercury lines using spectrometer and grating
- 4. Refractive index of material of the lens by minimum deviation
- 5. Refractive index of liquid using liquid prism
- 6. Determination of AC frequency using sonometer
- 7. Specific resistance of a wire using PO box
- 8. Thermal conductivity of poor conductor using Lee's disc
- 9. Determination of figure of merit table galvanometer
- 10. Determination of Earth's magnetic field using field along the axis of a coil
- 11. Characterisation of Zener diode
- 12. Construction of Zerner/IC regulated power supply
- 13. Construction of AND, OR, NOT gates using diodes and transistor
- 14. NOR gate as a universal building block

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	